Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cedric Patthey is active.

Publication


Featured researches published by Cedric Patthey.


Development | 2009

Wnt-regulated temporal control of BMP exposure directs the choice between neural plate border and epidermal fate

Cedric Patthey; Thomas Edlund; Lena Gunhaga

The non-neural ectoderm is divided into neural plate border and epidermal cells. At early blastula stages, Wnt and BMP signals interact to induce epidermal fate, but when and how cells initially acquire neural plate border fate remains poorly defined. We now provide evidence in chick that the specification of neural plate border cells is initiated at the late blastula stage and requires both Wnt and BMP signals. Our results indicate, however, that at this stage BMP signals can induce neural plate border cells only when Wnt activity is blocked, and that the two signals in combination generate epidermal cells. We also provide evidence that Wnt signals do not play an instructive role in the generation of neural plate border cells, but promote their generation by inducing BMP gene expression, which avoids early simultaneous exposure to the two signals and generates neural plate border instead of epidermal cells. Thus, specification of neural plate border cells is mediated by a novel Wnt-regulated BMP-mediated temporal patterning mechanism.


European Journal of Neuroscience | 2011

Specification and regionalisation of the neural plate border.

Cedric Patthey; Lena Gunhaga

During early vertebrate development, the embryonic ectoderm becomes subdivided into neural, neural plate border (border) and epidermal regions. The nervous system is derived from the neural and border domains which, respectively, give rise to the central and peripheral nervous systems. To better understand the functional nervous system we need to know how individual neurons are specified and connected. Our understanding of the early development of the peripheral nervous system has been lagging compared to knowledge regarding central nervous system and epidermal cell lineage decision. Recent advances have shown when and how the specification of border cells is initiated. One important insight is that border specification is already initiated at blastula stages, and can be molecularly and temporally distinguished from rostrocaudal regionalisation of the border. From findings in several species, it is clear that Wnt, Bone Morphogenetic Protein and Fibroblast Growth Factor signals play important roles during the specification and regionalisation of the border. In this review, we highlight the individual roles of these signals and compare models of border specification, including a new model that describes how temporal coordination and epistatic interactions of extracellular signals result in the specification and regionalisation of border cells.


Developmental Biology | 2014

The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning

Gerhard Schlosser; Cedric Patthey; Sebastian M. Shimeld

Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.


Experimental Cell Research | 2014

Signaling pathways regulating ectodermal cell fate choices.

Cedric Patthey; Lena Gunhaga

Although embryonic patterning and early development of the nervous system have been studied for decades, our understanding of how signals instruct ectodermal derivatives to acquire specific identities has only recently started to form a coherent picture. In this mini-review, we summarize recent findings and models of how a handful of well-known secreted signals influence progenitor cells in successive binary decisions to adopt various cell type specific differentiation programs.


Mechanisms of Development | 2006

Convergent Wnt and FGF signaling at the gastrula stage induce the formation of the isthmic organizer.

Susanne Olander; Ulrika Nordström; Cedric Patthey; Thomas Edlund

The development of the vertebrate brain depends on the formation of local organizing centres within the neural tube that express secreted signals that refine local neural progenitor identity. The isthmic organizer (IsO) forms at the isthmic constriction and is required for the growth and ordered development of mesencephalic and metencephalic structures. The formation of the IsO, which is characterized by the generation of a complex pattern of cells at the midbrain-hindbrain boundary, has been described in detail. However, when neural plate cells are initially instructed to form the IsO, the molecular nature of the inductive signals remain poorly defined. We now provide evidence that convergent Wnt and FGF signaling at the gastrula stage are required to generate the complex polarized pattern of cells characteristic of the IsO, and that Wnt and FGF signals in combination are sufficient to reconstruct, in naïve forebrain cells, an IsO-like structure that exhibits an organizing activity that mimics the endogenous IsO when transplanted into the diencephalon of chick embryos.


Development | 2015

Neural retina identity is specified by lens-derived BMP signals

Tanushree Pandit; Vijay K. Jidigam; Cedric Patthey; Lena Gunhaga

The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are differentially specified is not well defined. In the present study, we have analyzed these issues by manipulating signaling pathways in intact chick embryo and explant assays. Our results provide evidence that at blastula stages, BMP signals inhibit the acquisition of eye-field character, but from neural tube/optic vesicle stages, BMP signals from the lens are crucial for the maintenance of eye-field character, inhibition of dorsal telencephalic cell identity and specification of neural retina cells. Subsequently, our results provide evidence that a Rax2-positive eye-field state is not sufficient for the progress to a neural retina identity, but requires BMP signals. In addition, our results argue against any essential role of Wnt or FGF signals during the specification of neural retina cells, but provide evidence that Wnt signals together with BMP activity are sufficient to induce cells of retinal pigment epithelial character. We conclude that BMP activity emanating from the lens ectoderm maintains eye-field identity, inhibits telencephalic character and induces neural retina cells. Our findings link the requirement of the lens ectoderm for neural retina specification with the molecular mechanism by which cells in the forebrain become specified as neural retina by BMP activity. SUMMARY: BMP signals from the lens are crucial to maintain eye-field character, inhibit dorsal telencephalic cell identity, and specificy neural retina cells in chick embryos.


Biology Open | 2015

Apical constriction and epithelial invagination are regulated by BMP activity

Vijay K. Jidigam; Raghuraman C. Srinivasan; Cedric Patthey; Lena Gunhaga

ABSTRACT Epithelial invagination is a morphological process in which flat cell sheets transform into three-dimensional structures through bending of the tissue. It is accompanied by apical constriction, in which the apical cell surface is reduced in relation to the basal cell surface. Although much is known about the intra-cellular molecular machinery driving apical constriction and epithelial invagination, information of how extra-cellular signals affect these processes remains insufficient. In this study we have established several in vivo assays of placodal invagination to explore whether the external signal BMP regulates processes connected to epithelial invagination. By inhibiting BMP activity in prospective cranial placodes, we provide evidence that BMP signals are required for RhoA and F-actin rearrangements, apical constriction, cell elongation and epithelial invagination. The failure of placode invagination after BMP inhibition appears to be a direct consequence of disrupted apical accumulation of RhoA and F-actin, rather than changes in cell death or proliferation. In addition, our results show that epithelial invagination and acquisition of placode-specific identities are two distinct and separable developmental processes. In summary, our results provide evidence that BMP signals promote epithelial invagination by acting upstream of the intracellular molecular machinery that drives apical constriction and cell elongation. Summary: We describe a novel role for BMP activity in promoting a direct and cell type-independent mechanism for apical constriction, cell elongation and epithelial invagination, separate from acquisition of placode-specific identities.


Developmental Dynamics | 2015

Characterization of two neurogenin genes from the brook lamprey lampetra planeri and their expression in the lamprey nervous system

Ricardo Lara-Ramírez; Cedric Patthey; Sebastian M. Shimeld

Conclusions: Neurogenins are required for the specification of neuronal precursors and regulate the expression of basic Helix‐Loop‐Helix genes involved in neuronal differentiation. Jawed vertebrates possess three Neurogenin paralogy groups and their combined expression covers the entire nervous system, apart from the autonomic nervous system. Results: Here we report the isolation of two Neurogenin genes, LpNgnA and LpNgnB, from the lamprey Lampetra planeri. Phylogenetic analyses show both genes have orthologues in other lamprey species and in a hagfish. Neither gene shows evidence of orthology to specific jawed vertebrate Neurogenin paralogues. LpNgnA is expressed in the ventricular zone of regions of the brain and spinal cord, with expression in the brain demarcating brain sub‐compartments including the pallium, tegmentum, tectum, and dorsal thalamus. In the peripheral nervous system, LpNgnA is expressed in cranial sensory placodes and their derivatives, and in the dorsal root ganglia. LpNgnB is expressed transiently in placodal head ectoderm and throughout the central nervous system in early development, and in a small population cells that form part of the macula. Conclusions: Combined, LpNgnA and LpNgnB were detected in most cell populations marked by Neurogenin gene expression in jawed vertebrates, with the exception of the cerebellum, retina and the non‐neural expression sites. Developmental Dynamics 244:1096–1108, 2015.


Development | 2018

Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation

Tamilarasan K. Panaliappan; Walter Wittmann; Vijay K. Jidigam; Sara Mercurio; Jessica Bertolini; Soufien Sghari; Raj Bose; Cedric Patthey; Silvia K. Nicolis; Lena Gunhaga

ABSTRACT The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression. Summary: Analysis of Sox2 mutant mouse and Sox2 CRISPR-targeted chick embryos reveals that Sox2 controls the establishment of sensory progenitors in the olfactory epithelium by suppressing Bmp4 and upregulating Hes5 expression.


Scientific Reports | 2017

Evolution of the functionally conserved DCC gene in birds

Cedric Patthey; Yong Guang Tong; Christine Mary Tait; Sara Wilson

Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes.

Collaboration


Dive into the Cedric Patthey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine Ng

Linköping University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge