Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cedric Simillion is active.

Publication


Featured researches published by Cedric Simillion.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The hidden duplication past of Arabidopsis thaliana

Cedric Simillion; Klaas Vandepoele; Marc Van Montagu; Marc Zabeau; Yves Van de Peer

Analysis of the genome sequence of Arabidopsis thaliana shows that this genome, like that of many other eukaryotic organisms, has undergone large-scale gene duplications or even duplications of the entire genome. However, the high frequency of gene loss after duplication events reduces colinearity and therefore the chance of finding duplicated regions that, at the extreme, no longer share homologous genes. In this study we show that heavily degenerated block duplications that can no longer be recognized by directly comparing two segments because of differential gene loss, can still be detected through indirect comparison with other segments. When these so-called hidden duplications in Arabidopsis are taken into account, many homologous genomic regions can be found in five to eight copies. This finding strongly implies that Arabidopsis has undergone three, but probably no more, rounds of genome duplications. Therefore, adding such hidden blocks to the duplication landscape of Arabidopsis sheds light on the number of polyploidy events that this model plant genome has undergone in its evolutionary past.


Molecular Systems Biology | 2010

Feedback between p21 and reactive oxygen production is necessary for cell senescence

João F. Passos; Glyn Nelson; Chunfang Wang; Torsten Richter; Cedric Simillion; Carole J. Proctor; Satomi Miwa; Sharon Olijslagers; Jennifer Hallinan; Anil Wipat; Gabriele Saretzki; Karl Lenhard Rudolph; Thomas B. L. Kirkwood; Thomas von Zglinicki

Cellular senescence—the permanent arrest of cycling in normally proliferating cells such as fibroblasts—contributes both to age‐related loss of mammalian tissue homeostasis and acts as a tumour suppressor mechanism. The pathways leading to establishment of senescence are proving to be more complex than was previously envisaged. Combining in‐silico interactome analysis and functional target gene inhibition, stochastic modelling and live cell microscopy, we show here that there exists a dynamic feedback loop that is triggered by a DNA damage response (DDR) and, which after a delay of several days, locks the cell into an actively maintained state of ‘deep’ cellular senescence. The essential feature of the loop is that long‐term activation of the checkpoint gene CDKN1A (p21) induces mitochondrial dysfunction and production of reactive oxygen species (ROS) through serial signalling through GADD45‐MAPK14(p38MAPK)‐GRB2‐TGFBR2‐TGFβ. These ROS in turn replenish short‐lived DNA damage foci and maintain an ongoing DDR. We show that this loop is both necessary and sufficient for the stability of growth arrest during the establishment of the senescent phenotype.


Genome Biology | 2006

The gain and loss of genes during 600 million years of vertebrate evolution

Tine Blomme; Klaas Vandepoele; Stefanie De Bodt; Cedric Simillion; Steven Maere; Yves Van de Peer

BackgroundGene duplication is assumed to have played a crucial role in the evolution of vertebrate organisms. Apart from a continuous mode of duplication, two or three whole genome duplication events have been proposed during the evolution of vertebrates, one or two at the dawn of vertebrate evolution, and an additional one in the fish lineage, not shared with land vertebrates. Here, we have studied gene gain and loss in seven different vertebrate genomes, spanning an evolutionary period of about 600 million years.ResultsWe show that: first, the majority of duplicated genes in extant vertebrate genomes are ancient and were created at times that coincide with proposed whole genome duplication events; second, there exist significant differences in gene retention for different functional categories of genes between fishes and land vertebrates; third, there seems to be a considerable bias in gene retention of regulatory genes towards the mode of gene duplication (whole genome duplication events compared to smaller-scale events), which is in accordance with the so-called gene balance hypothesis; and fourth, that ancient duplicates that have survived for many hundreds of millions of years can still be lost.ConclusionBased on phylogenetic analyses, we show that both the mode of duplication and the functional class the duplicated genes belong to have been of major importance for the evolution of the vertebrates. In particular, we provide evidence that massive gene duplication (probably as a consequence of entire genome duplications) at the dawn of vertebrate evolution might have been particularly important for the evolution of complex vertebrates.


The Plant Cell | 2003

Evidence That Rice and Other Cereals Are Ancient Aneuploids

Klaas Vandepoele; Cedric Simillion; Yves Van de Peer

Detailed analyses of the genomes of several model organisms revealed that large-scale gene or even entire-genome duplications have played prominent roles in the evolutionary history of many eukaryotes. Recently, strong evidence has been presented that the genomic structure of the dicotyledonous model plant species Arabidopsis is the result of multiple rounds of entire-genome duplications. Here, we analyze the genome of the monocotyledonous model plant species rice, for which a draft of the genomic sequence was published recently. We show that a substantial fraction of all rice genes (∼15%) are found in duplicated segments. Dating of these block duplications, their nonuniform distribution over the different rice chromosomes, and comparison with the duplication history of Arabidopsis suggest that rice is not an ancient polyploid, as suggested previously, but an ancient aneuploid that has experienced the duplication of one—or a large part of one—chromosome in its evolutionary past, ∼70 million years ago. This date predates the divergence of most of the cereals, and relative dating by phylogenetic analysis shows that this duplication event is shared by most if not all of them.


Journal of Structural and Functional Genomics | 2003

Investigating ancient duplication events in the Arabidopsis genome

Jeroen Raes; Klaas Vandepoele; Cedric Simillion; Yvan Saeys; Yves Van de Peer

The complete genomic analysis of Arabidopsis thaliana has shown that a major fraction of the genome consists of paralogous genes that probably originated through one or more ancient large-scale gene or genome duplication events. However, the number and timing of these duplications still remains unclear, and several different hypotheses have been put forward recently. Here, we reanalyzed duplicated blocks found in the Arabidopsis genome described previously and determined their date of divergence based on silent substitution estimations between the paralogous genes and, where possible, by phylogenetic reconstruction. We show that methods based on averaging protein distances of heterogeneous classes of duplicated genes lead to unreliable conclusions and that a large fraction of blocks duplicated much more recently than assumed previously. We found clear evidence for one large-scale gene or even complete genome duplication event somewhere between 70 to 90 million years ago. Traces pointing to a much older (probably more than 200 million years) large-scale gene duplication event could be detected. However, for now it is impossible to conclude whether these old duplicates are the result of one or more large-scale gene duplication events.


Trends in Genetics | 2002

Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice

Klaas Vandepoele; Cedric Simillion; Yves Van de Peer

Genome analysis shows that large-scale gene duplications have occurred in fungi, animals and plants, creating genomic regions that show similarity in gene content and order. However, the high frequency of gene loss reduces colinearity resulting in duplicated regions that, in the extreme, no longer share homologous genes. Here, we show that by comparison with an appropriate second genome, such paralogous regions can still be identified.


Bioinformatics | 2008

i-ADHoRe 2.0

Cedric Simillion; Koen Janssens; Lieven Sterck; Yves Van de Peer

SUMMARY i-ADHoRe is a software tool that combines gene content and gene order information of homologous genomic segments into profiles to detect highly degenerated homology relations within and between genomes. The new version offers, besides a significant increase in performance, several optimizations to the algorithm, most importantly to the profile alignment routine. As a result, the annotations of multiple genomes, or parts thereof, can be fed simultaneously into the program, after which it will report all regions of homology, both within and between genomes. AVAILABILITY The i-ADHoRe 2.0 package contains the C++ source code for the main program as well as various Perl scripts and a fully documented Perl API to facilitate post-processing. The software runs on any Linux- or -UNIX based platform. The package is freely available for academic users and can be downloaded from http://bioinformatics.psb.ugent.be/


Journal of Hepatology | 2015

Regular exercise decreases liver tumors development in hepatocyte-specific PTEN-deficient mice independently of steatosis

Anne-Christine Piguet; Uttara Saran; Cedric Simillion; Irene Keller; Luigi Terracciano; Helen L. Reeves; Jean-François Dufour

BACKGROUND & AIMS Unhealthy lifestyles predispose people to non-alcoholic steatohepatitis (NASH), which may further result in the development of hepatocellular carcinoma (HCC). Although NASH patients benefit from physical activity, it is unknown whether regular exercise reduces the risk of developing HCC. Therefore, we studied the effect of regular exercise on the development of HCC in male hepatocyte-specific PTEN-deficient mice (AlbCrePten(flox/flox)), which develop steatohepatitis and HCC spontaneously. METHODS Mice were fed a standardized 10% fat diet and were randomly divided into exercise or sedentary groups. The exercise group ran on a motorized treadmill for 60 min/day, 5 days/week during 32 weeks. RESULTS After 32 weeks of regular exercise, 71% of exercised mice developed nodules larger than 15 mm(3)vs. 100% of mice in the sedentary group. The mean number of tumors per liver was reduced by exercise, as well as the total tumoral volume per liver. Exercise did not affect steatosis and had no effect on the non-alcoholic fatty liver disease (NAFLD) Activity Score (NAS). Exercise decreased tumor cell proliferation. Mechanistically, exercise stimulated the phosphorylation of AMPK and its substrate raptor, which decreased the kinase activity of mTOR. CONCLUSIONS These data show a beneficial effect of regular exercise on the development of HCC in an experimental model of NASH and offer a rationale for encouraging predisposed patients to increase their physical activity for the prevention of HCC.


Age | 2009

Cellular senescence: unravelling complexity

João F. Passos; Cedric Simillion; Jennifer Hallinan; Anil Wipat; Thomas von Zglinicki

Cellular senescence might be a tumour suppressing mechanism as well as a contributor to age-related loss of tissue function. It has been characterised classically as the result of the loss of DNA sequences called telomeres at the end of chromosomes. However, recent studies have revealed that senescence is in fact an intricate process, involving the sequential activation of multiple cellular processes, which have proven necessary for the establishment and maintenance of the phenotype. Here, we review some of these processes, namely, the role of mitochondrial function and reactive oxygen species, senescence-associated secreted proteins and chromatin remodelling. Finally, we illustrate the use of systems biology to address the mechanistic, functional and biochemical complexity of senescence.


PLOS ONE | 2011

Identification of Novel Androgen-Regulated Pathways and mRNA Isoforms through Genome-Wide Exon- Specific Profiling of the LNCaP Transcriptome

Prabhakar Rajan; Caroline Dalgliesh; Phillippa J. Carling; Thomas Buist; Chaolin Zhang; Sushma-Nagaraja Grellscheid; Kelly Armstrong; Jacqueline Stockley; Cedric Simillion; Luke Gaughan; Gabriela Kalna; Michael Q. Zhang; Craig N. Robson; Hing Y. Leung; David J. Elliott

Androgens drive the onset and progression of prostate cancer (PCa) by modulating androgen receptor (AR) transcriptional activity. Although several microarray-based studies have identified androgen-regulated genes, here we identify in-parallel global androgen-dependent changes in both gene and alternative mRNA isoform expression by exon-level analyses of the LNCaP transcriptome. While genome-wide gene expression changes correlated well with previously-published studies, we additionally uncovered a subset of 226 novel androgen-regulated genes. Gene expression pathway analysis of this subset revealed gene clusters associated with, and including the tyrosine kinase LYN, as well as components of the mTOR (mammalian target of rapamycin) pathway, which is commonly dysregulated in cancer. We also identified 1279 putative androgen-regulated alternative events, of which 325 (∼25%) mapped to known alternative splicing events or alternative first/last exons. We selected 30 androgen-dependent alternative events for RT-PCR validation, including mRNAs derived from genes encoding tumour suppressors and cell cycle regulators. Of seven positively-validating events (∼23%), five events involved transcripts derived from alternative promoters of known AR gene targets. In particular, we found a novel androgen-dependent mRNA isoform derived from an alternative internal promoter within the TSC2 tumour suppressor gene, which is predicted to encode a protein lacking an interaction domain required for mTOR inhibition. We confirmed that expression of this alternative TSC2 mRNA isoform was directly regulated by androgens, and chromatin immunoprecipitation indicated recruitment of AR to the alternative promoter region at early timepoints following androgen stimulation, which correlated with expression of alternative transcripts. Together, our data suggest that alternative mRNA isoform expression might mediate the cellular response to androgens, and may have roles in clinical PCa.

Collaboration


Dive into the Cedric Simillion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rémy Bruggmann

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Keller

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge