Celeste Sassi
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Celeste Sassi.
The New England Journal of Medicine | 2013
Rita Guerreiro; Aleksandra Wojtas; Jose Bras; Minerva M. Carrasquillo; Ekaterina Rogaeva; Elisa Majounie; Carlos Cruchaga; Celeste Sassi; John Kauwe; Steven G. Younkin; Lili-Naz Hazrati; John Collinge; Jennifer M. Pocock; Tammaryn Lashley; Julie Williams; Jean Charles Lambert; Philippe Amouyel; Alison Goate; Rosa Rademakers; Kevin Morgan; John Powell; Peter St George-Hyslop; Andrew Singleton; John Hardy
BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimers disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimers disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimers disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimers disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimers disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimers disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimers disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimers disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimers disease. (Funded by Alzheimers Research UK and others.).
Nature | 2014
Carlos Cruchaga; Celeste M. Karch; Sheng Chih Jin; Bruno A. Benitez; Yefei Cai; Rita Guerreiro; Oscar Harari; Joanne Norton; John Budde; Sarah Bertelsen; Amanda T. Jeng; Breanna Cooper; Tara Skorupa; David Carrell; Denise Levitch; Simon Hsu; Jiyoon Choi; Mina Ryten; John Hardy; Daniah Trabzuni; Michael E. Weale; Adaikalavan Ramasamy; Colin Smith; Celeste Sassi; Jose Bras; J. Raphael Gibbs; Dena Hernandez; Michelle K. Lupton; John Powell; Paola Forabosco
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimers disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Neurobiology of Aging | 2014
Bruno A. Benitez; Sheng Chih Jin; Rita Guerreiro; Rob Graham; Jenny Lord; Denise Harold; Rebecca Sims; Jean Charles Lambert; J. Raphael Gibbs; Jose Bras; Celeste Sassi; Oscar Harari; Sarah Bertelsen; Michelle K. Lupton; John Powell; Céline Bellenguez; Kristelle Brown; Christopher Medway; Patrick C.G. Haddick; Marcel van der Brug; Tushar Bhangale; Ward Ortmann; Timothy W. Behrens; Richard Mayeux; Margaret A. Pericak-Vance; Lindsay A. Farrer; Gerard D. Schellenberg; Jonathan L. Haines; Jim Turton; Anne Braae
TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on chromosome 6p21.11. Recent studies have identified a rare coding variant (p.R47H) in TREM2 that confers a high risk for Alzheimers disease (AD). In addition, common single nucleotide polymorphisms in this genomic region are associated with cerebrospinal fluid biomarkers for AD and a common intergenic variant found near the TREML2 gene has been identified to be protective for AD. However, little is known about the functional variant underlying the latter association or its relationship with the p.R47H. Here, we report comprehensive analyses using whole-exome sequencing data, cerebrospinal fluid biomarker analyses, meta-analyses (16,254 cases and 20,052 controls) and cell-based functional studies to support the role of the TREML2 coding missense variant p.S144G (rs3747742) as a potential driver of the meta-analysis AD-associated genome-wide association studies signal. Additionally, we demonstrate that the protective role of TREML2 in AD is independent of the role of TREM2 gene as a risk factor for AD.
American Journal of Human Genetics | 2013
Monia Benhamed Hammer; Ghada Eleuch-Fayache; Lucia Schottlaender; Houda Nehdi; J. Raphael Gibbs; Sampath Arepalli; Sean B. Chong; Dena Hernandez; Anna Sailer; Guoxiang Liu; Pramod K. Mistry; Huaibin Cai; Ginamarie Shrader; Celeste Sassi; Yosr Bouhlal; Henry Houlden; F. Hentati; Rim Amouri; Andrew Singleton
Autosomal-recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders with more than 20 different forms currently recognized, many of which are also associated with increased tone and some of which have limb spasticity. Gaucher disease is a lysosomal storage disease resulting from a defect in the enzyme acid β-glucosidase 1. β-glucosidase 2 is an enzyme with similar glucosylceramidase activity but to date has not been associated with a monogenic disorder. We studied four unrelated consanguineous families of Tunisian decent diagnosed with cerebellar ataxia of unknown origin. We performed homozygosity mapping and whole-exome sequencing in an attempt to identify the genetic origin of their disorder. We were able to identify mutations responsible for autosomal-recessive ataxia in these families within the gene encoding β-glucosidase 2, GBA2. Two nonsense mutations (c.363C>A [p.Tyr121(∗)] and c.1018C>T [p.Arg340(∗)]) and a substitution (c.2618G>A [p.Arg873His]) were identified, probably resulting in nonfunctional enzyme. This study suggests GBA2 mutations are a cause of recessive spastic ataxia and responsible for a form of glucosylceramide storage disease in humans.
Neurobiology of Aging | 2014
Celeste Sassi; Rita Guerreiro; Raphael Gibbs; Jinhui Ding; Michelle K. Lupton; Claire Troakes; Safa Al-Sarraj; Michael Niblock; Jean-Marc Gallo; Jihad Adnan; Richard Killick; Kristelle Brown; Christopher Medway; Jenny Lord; James Turton; Jose Bras; Kevin Morgan; John Powell; Andrew Singleton; John Hardy
The overlapping clinical and neuropathologic features between late-onset apparently sporadic Alzheimers disease (LOAD), familial Alzheimers disease (FAD), and other neurodegenerative dementias (frontotemporal dementia, corticobasal degeneration, progressive supranuclear palsy, and Creutzfeldt-Jakob disease) raise the question of whether shared genetic risk factors may explain the similar phenotype among these disparate disorders. To investigate this intriguing hypothesis, we analyzed rare coding variability in 6 Mendelian dementia genes (APP, PSEN1, PSEN2, GRN, MAPT, and PRNP), in 141 LOAD patients and 179 elderly controls, neuropathologically proven, from the UK. In our cohort, 14 LOAD cases (10%) and 11 controls (6%) carry at least 1 rare variant in the genes studied. We report a novel variant in PSEN1 (p.I168T) and a rare variant in PSEN2 (p.A237V), absent in controls and both likely pathogenic. Our findings support previous studies, suggesting that (1) rare coding variability in PSEN1 and PSEN2 may influence the susceptibility for LOAD and (2) GRN, MAPT, and PRNP are not major contributors to LOAD. Thus, genetic screening is pivotal for the clinical differential diagnosis of these neurodegenerative dementias.
European Journal of Neurology | 2013
Monia Benhamed Hammer; G. Eleuch-Fayache; J. R. Gibbs; Sampath Arepalli; Sean B. Chong; Celeste Sassi; Yosr Bouhlal; F. Hentati; R. Amouri; Andrew Singleton
Autosomal recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders. We studied three families diagnosed with ARCA.
Neurobiology of Aging | 2016
Celeste Sassi; Michael A. Nalls; Perry G. Ridge; J.R. Gibbs; Jinhui Ding; Michelle K. Lupton; Claire Troakes; Katie Lunnon; Safa Al-Sarraj; Kristelle Brown; Christopher Medway; Naomi Clement; Jenny Lord; James Turton; Jose Bras; Maria Rosário Almeida; Peter Passmore; David Craig; Janet A. Johnston; Bernadette McGuinness; Stephen Todd; Reinhard Heun; Heike Kölsch; Patrick Gavin Kehoe; Emma R.L.C. Vardy; Nigel M. Hooper; David Mann; Stuart Pickering-Brown; James Lowe; Kevin Morgan
Genome-wide association studies (GWASs) have been effective approaches to dissect common genetic variability underlying complex diseases in a systematic and unbiased way. Recently, GWASs have led to the discovery of over 20 susceptibility loci for Alzheimers disease (AD). Despite the evidence showing the contribution of these loci to AD pathogenesis, their genetic architecture has not been extensively investigated, leaving the possibility that low frequency and rare coding variants may also occur and contribute to the risk of disease. We have used exome and genome sequencing data to analyze the single independent and joint effect of rare and low-frequency protein coding variants in 9 AD GWAS loci with the strongest effect sizes after APOE (BIN1, CLU, CR1, PICALM, MS4A6A, ABCA7, EPHA1, CD33, and CD2AP) in a cohort of 332 sporadic AD cases and 676 elderly controls of British and North-American ancestry. We identified coding variability in ABCA7 as contributing to AD risk. This locus harbors a low-frequency coding variant (p.G215S, rs72973581, minor allele frequency = 4.3%) conferring a modest but statistically significant protection against AD (p-value = 0.024, odds ratio = 0.57, 95% confidence interval = 0.41–0.80). Notably, our results are not driven by an enrichment of loss of function variants in ABCA7, recently reported as main pathogenic factor underlying AD risk at this locus. In summary, our study confirms the role of ABCA7 in AD and provides new insights that should address functional studies.
Neurobiology of Aging | 2014
Celeste Sassi; Rita Guerreiro; Raphael Gibbs; Jinhui Ding; Michelle K. Lupton; Claire Troakes; Katie Lunnon; Safa Al-Sarraj; Kristelle Brown; Chirstopher Medway; Jenny Lord; James Turton; David Mann; Julie S. Snowden; David Neary; Jeniffer Harris; Jose Bras; Kevin Morgan; John Powell; Andrew Singleton; John Hardy
Early-onset Alzheimers disease (EOAD) represents 1%–2% of the Alzheimers disease (AD) cases, and it is generally characterized by a positive family history and a rapidly progressive symptomatology. Rare coding and fully penetrant variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are the only causative mutations reported for autosomal dominant AD. Thus, in this study we used exome sequencing data to rapidly screen rare coding variability in APP, PSEN1, and PSEN2, in a British cohort composed of 47 unrelated EOAD cases and 179 elderly controls, neuropathologically proven. We report 2 novel and likely pathogenic variants in PSEN1 (p.L166V and p.S230R). A comprehensive catalog of rare pathogenic variants in the AD Mendelian genes is pivotal for a premortem diagnosis of autosomal dominant EOAD and for the differential diagnosis with other early onset dementias such as frontotemporal dementia (FTD) and Creutzfeldt-Jakob disease (CJD).
PLOS ONE | 2016
Celeste Sassi; Perry G. Ridge; Michael A. Nalls; Raphael Gibbs; Jinhui Ding; Michelle K. Lupton; Claire Troakes; Katie Lunnon; Safa Al-Sarraj; Kristelle Brown; Christopher Medway; Jenny Lord; James Turton; Kevin Morgan; John Powell; John Kauwe; Carlos Cruchaga; Jose Bras; Alison Goate; Andrew Singleton; Rita Guerreiro; John Hardy
The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4<p-value<0.05), were found to be rare coding variants (0.009%<MAF<1.4%) with moderate to strong effect size (1.84<OR<Inf) that map to genes mainly involved in Aβ extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling (SORL1). These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e-3 <p-value <0.05). In concert with previous studies, we suggest that 1) common coding variability in APP-Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD.
Journal of Alzheimer's Disease | 2016
Celeste Sassi; Rosa Capozzo; Raphael Gibbs; Cynthia Crews; Chiara Zecca; Simona Arcuti; Massimiliano Copetti; Maria Rosaria Barulli; Vincenzo Brescia; Andrew Singleton; Giancarlo Logroscino
Heterozygous loss of function mutations in granulin represent a significant cause of frontotemporal lobar degeneration with ubiquitin and TDP-43 inclusions (FTLD-TDP). We report a novel GRN splice site mutation (c.709-2 A>T), segregating with frontotemporal dementia spectrum in a large family from southern Italy. The GRN c.709-2 A>T is predicted to result in the skipping of exon 8, leading to non-sense mediated mRNA decay. Moreover, the PGRN plasma levels in the GRN c.709-2 A>T carriers were significantly lower (24 ng/ml) compared to controls (142.7 ng/ml) or family members non-carriers (82.0 ng/ml) (p-value = 0.005, Kruskal Wallis), suggesting progranulin haploinsufficiency. We do not report any potential pathogenic GRN mutation in a follow-up cohort composed of 6 FTD families and 43 sporadic FTD cases, from the same geographic area. Our study suggests that GRN (c.709-2 A>T) is a novel and likely very rare cause of FTD in this Italian cohort. Finally, in line with previous studies, we show that GRN haploinsufficiency leads to a heterogeneous clinical picture, and plasma progranulin levels may be a reliable tool to identify GRN loss of function mutations. However, given that a) genetic and environmental factors, gender, and age may regulate PGRN plasma levels and b) plasma progranulin levels may not reflect PGRN levels in the central nervous system, we suggest that the measurement of progranulin in the plasma should always be coupled with genetic screening of GRN for mutations.