Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celestine N. Chi is active.

Publication


Featured researches published by Celestine N. Chi.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

Anders Bach; Bettina Hjelm Clausen; Magda Møller; Bente Vestergaard; Celestine N. Chi; Adam Round; Pernille L. Sørensen; Klaus B. Nissen; Jette S. Kastrup; Michael Gajhede; Per Jemth; Anders Kristensen; Patrik Lundström; Kate Lykke Lambertsen; Kristian Strømgaard

Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel dimeric inhibitor, Tat-NPEG4(IETDV)2 (Tat-N-dimer), which binds the tandem PDZ1-2 domain of PSD-95 with an unprecedented high affinity of 4.6 nM, and displays extensive protease-resistance as evaluated in vitro by stability-measurements in human blood plasma. X-ray crystallography, NMR, and small-angle X-ray scattering (SAXS) deduced a true bivalent interaction between dimeric inhibitor and PDZ1-2, and also provided a dynamic model of the conformational changes of PDZ1-2 induced by the dimeric inhibitor. A single intravenous injection of Tat-N-dimer (3 nmol/g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-N-dimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Reassessing a sparse energetic network within a single protein domain

Celestine N. Chi; Lisa T. Elfström; Yao Shi; Tord Snäll; Åke Engström; Per Jemth

Understanding the molecular principles that govern allosteric communication is an important goal in protein science. One way allostery could be transmitted is via sparse energetic networks of residues, and one such evolutionary conserved network was identified in the PDZ domain family of proteins by multiple sequence alignment [Lockless SW, Ranganathan R (1999) Science 286:295–299]. We have reassessed the energetic coupling of these residues by double mutant cycles together with ligand binding and stability experiments and found that coupling is not a special property of the coevolved network of residues in PDZ domains. The observed coupling for ligand binding is better explained by a distance relationship, where residues close in space are more likely to couple than distal residues. Our study demonstrates that statistical coupling from sequence analysis is not necessarily a reporter of energetic coupling and allostery.


Journal of Medicinal Chemistry | 2008

Modified peptides as potent inhibitors of the postsynaptic density-95/N-methyl-D-aspartate receptor interaction.

Anders Bach; Celestine N. Chi; Thomas B. Olsen; Søren W. Pedersen; Martin U. Røder; Gar F. Pang; Rasmus P. Clausen; Per Jemth; Kristian Strømgaard

The protein-protein interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. An undecapeptide corresponding to the C-terminal of the NMDA was used as a template for finding lead candidates for the inhibition of the PSD-95/NMDA receptor interaction. Initially, truncation and alanine scan studies were carried out, which resulted in a pentapeptide with wild-type affinity, as examined in a fluorescence polarization assay. Further examination was performed by systematic substitutions with natural and unnatural amino acids, which disclosed a tripeptide with micromolar affinity and N-methylated tetrapeptides with improved affinities. Molecular modeling studies guided further N-terminal modifications and introduction of a range of N-terminal substitutions dramatically improved affinity. The best compound, N-cyclohexylethyl-ETAV (56), demonstrated up to 19-fold lower K i value ( K i = 0.94 and 0.45 microM against PDZ1 and PDZ2 of PSD-95, respectively) compared to wild-type values, providing the most potent inhibitors of this interaction reported so far. These novel and potent inhibitors provide an important basis for development of small molecule inhibitors of the PSD-95/NMDA receptor interaction.


Biochemistry | 2009

A sequential binding mechanism in a PDZ domain.

Celestine N. Chi; Anders Bach; Åke Engström; Huiqun Wang; Kristian Strømgaard; Stefano Gianni; Per Jemth

Conformational selection and induced fit are two well-known mechanisms of allosteric protein-ligand interaction. Some proteins, like ubiquitin, have recently been found to exist in multiple conformations at equilibrium, suggesting that the conformational selection may be a general mechanism of interaction, in particular for single-domain proteins. Here, we found that the PDZ2 domain of SAP97 binds its ligand via a sequential (induced fit) mechanism. We performed binding experiments using SAP97 PDZ2 and peptide ligands and observed biphasic kinetics with the stopped-flow technique, indicating that ligand binding involves at least a two-step process. By using an ultrarapid continuous-flow mixer, we then detected a hyperbolic dependence of binding rate constants on peptide concentration, corroborating the two-step binding mechanism. Furthermore, we found a similar dependence of the rate constants on both PDZ and peptide concentration, demonstrating that the PDZ2-peptide interaction involves a precomplex, which then undergoes a conformational change, and thereby follows an induced fit mechanism.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins

Nicoletta Calosci; Celestine N. Chi; Barbara Richter; Carlo Camilloni; Åke Engström; L. Eklund; Carlo Travaglini-Allocatelli; Stefano Gianni; Michele Vendruscolo; Per Jemth

The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.


Journal of Biological Chemistry | 2006

Two Conserved Residues Govern the Salt and pH Dependencies of the Binding Reaction of a PDZ Domain

Celestine N. Chi; Åke Engström; Stefano Gianni; Mårten Larsson; Per Jemth

PDZ domains are protein-protein interaction modules found in hundreds of human proteins. Their binding reactions are sensitive to variations in salt and pH but the basis of the respective dependence has not been clear. We investigated the binding reaction between PSD-95 PDZ3 and a peptide corresponding to a native ligand with protein engineering in conjunction with stopped-flow and equilibrium fluorimetry and found that the two conserved residues Arg-318 and His-372 were responsible for the salt and pH dependencies, respectively. The basis of the salt-dependent variation of the affinity was explored by mutating all charged residues in and around the peptide-binding pocket. Arg-318 was found to be crucial, as mutation to alanine obliterated the effect of chloride on the binding constants. The direct interaction of chloride with Arg-318 was demonstrated by time-resolved urea denaturation experiments, where the Arg-318 → Ala mutant was less stabilized by addition of chloride as compared with wild-type PDZ3. We also demonstrated that protonation of His-372 was responsible for the increase of the equilibrium dissociation constant at low pH. Both chloride concentration and pH (during ischemia) vary in the postsynaptic density, where PSD-95 is present, and the physiological buffer conditions may thus modulate the interaction between PSD-95 and its ligands through binding of chloride and protons to the “molecular switches” Arg-318 and His-372, respectively.


Biofactors | 2012

Ligand binding by PDZ domains.

Celestine N. Chi; Anders Bach; Kristian Strømgaard; Stefano Gianni; Per Jemth

The postsynaptic density protein‐95/disks large/zonula occludens‐1 (PDZ) protein domain family is one of the most common protein–protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.


Journal of Biological Chemistry | 2011

Sequence-specific Long Range Networks in PSD-95/Discs Large/ZO-1 (PDZ) Domains Tune Their Binding Selectivity

Stefano Gianni; S. Raza Haq; Linda Celeste Montemiglio; Maike Jürgens; Åke Engström; Celestine N. Chi; Maurizio Brunori; Per Jemth

Protein-protein interactions mediated by modular protein domains are critical for cell scaffolding, differentiation, signaling, and ultimately, evolution. Given the vast number of ligands competing for binding to a limited number of domain families, it is often puzzling how specificity can be achieved. Selectivity may be modulated by intradomain allostery, whereby a remote residue is energetically connected to the functional binding site via side chain or backbone interactions. Whereas several energetic pathways, which could mediate intradomain allostery, have been predicted in modular protein domains, there is a paucity of experimental data to validate their existence and roles. Here, we have identified such functional energetic networks in one of the most common protein-protein interaction modules, the PDZ domain. We used double mutant cycles involving site-directed mutagenesis of both the PDZ domain and the peptide ligand, in conjunction with kinetics to capture the fine energetic details of the networks involved in peptide recognition. We performed the analysis on two homologous PDZ-ligand complexes and found that the energetically coupled residues differ for these two complexes. This result demonstrates that amino acid sequence rather than topology dictates the allosteric pathways. Furthermore, our data support a mechanism whereby the whole domain and not only the binding pocket is optimized for a specific ligand. Such cross-talk between binding sites and remote residues may be used to fine tune target selectivity.


Angewandte Chemie | 2009

Design and Synthesis of Highly Potent and Plasma-Stable Dimeric Inhibitors of the PSD-95–NMDA Receptor Interaction†

Anders Bach; Celestine N. Chi; Gar F. Pang; Lars Olsen; Anders Kristensen; Per Jemth; Kristian Strømgaard

Understanding how proteins fold and bind is interesting since these processes are central to most biological activity. Protein folding and protein-protein interaction are by themselves very complex but using a good and robust system to study them could ease some of the hurdles. In this thesis I have tried to answer some of the fundamental questions of protein folding and binding. I chose to work with PDZ domains, which are protein domains consisting of 90-100 amino acids. They are found in more than 400 human proteins and function mostly as protein-protein interaction units. These proteins are very stable, easy to express and purify and their folding reaction is reversible under most laboratory conditions. I have characterized the interaction of PSD-95 PDZ3 domain with its putative ligand under different experimental conditions and found out that its binding kinetics is sensitive to salt and pH. I also demonstrated that the two conserved residues R318 and H372 in PDZ3 are responsible for the salt and pH effect, respectively, on the binding reaction. Moreover, I determined that for PSD 95 PDZ3 coupling of distal residues to peptide binding was better described by a distance relationship and there was a very weak evidence of an allosteric network. Further, I showed that another PDZ domain, SAP97 PDZ2 undergoes conformational change upon ligand binding. Also, I characterized the binding mechanism of a dimeirc ligand/PDZ1-2 tandem interaction and showed that despite its apparent complexity the binding reaction is best described by a square scheme. Additionally, I determined that for the SAP 97 PDZ/HPV E6 interaction that all three PDZ domains each bind one molecule of the E6 protein and that a set of residues in the PDZ2 of SAP 97 could operate in an unexpected long-range manner during E6 interaction. Finally, I showed that perhaps all members in the PDZ family could fold via a three state folding mechanism. I characterized the folding mechanism of five different PDZ domains having similar overall fold but different primary structure and the results indicate that all five fold via an intermediate with two transition states. Transition state one is rate limiting at low denaturant concentration and vice versa for transition state two. Comparing and characterizing the structures of the transition states of two PDZ domains using phi value analysis indicated that their early transition states are less similar as compared to their late transition states.


FEBS Letters | 2007

A conserved folding mechanism for PDZ domains

Celestine N. Chi; Stefano Gianni; Nicoletta Calosci; Carlo Travaglini-Allocatelli; Åke Engström; Per Jemth

An important question in protein folding is whether the folding mechanism is sequence dependent and conserved for homologous proteins. In this work we compared the kinetic folding mechanism of five postsynaptic density protein‐95, disc‐large tumor suppressor protein, zonula occludens‐1 (PDZ) domains, sharing similar topology but having different primary structures. Investigation of the different proteins under various experimental conditions revealed that the folding kinetics of each member of the PDZ family can be described by a model with two transition states separated by an intermediate. Moreover, the positions of the two transition states along the reaction coordinate (as given by their βT‐values) are fairly constant for the five PDZ domains.

Collaboration


Dive into the Celestine N. Chi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Gianni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Bach

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean Strotz

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Peter Güntert

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge