Celi Sun
Oklahoma Medical Research Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Celi Sun.
PLOS Genetics | 2013
Julio Molineros; Amit K. Maiti; Celi Sun; Loren L. Looger; Shizhong Han; Xana Kim-Howard; Stuart B. Glenn; Adam Adler; Jennifer A. Kelly; Timothy B. Niewold; Gary S. Gilkeson; Elizabeth E. Brown; Graciela S. Alarcón; Jeffrey C. Edberg; Michelle Petri; Rosalind Ramsey-Goldman; John D. Reveille; Luis M. Vilá; Barry I. Freedman; Betty P. Tsao; Lindsey A. Criswell; Chaim O. Jacob; Jason H. Moore; Timothy J. Vyse; Carl L. Langefeld; Joel M. Guthridge; Patrick M. Gaffney; Kathy L. Moser; R. Hal Scofield; Marta E. Alarcón-Riquelme
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
Nature Genetics | 2016
Celi Sun; Julio Molineros; Loren L. Looger; Xu Jie Zhou; Kwangwoo Kim; Yukinori Okada; Jianyang Ma; Yuan Yuan Qi; Xana Kim-Howard; Prasenjeet Motghare; Krishna Bhattarai; Adam Adler; So Young Bang; Hye Soon Lee; Tae-Hwan Kim; Young Mo Kang; Chang Hee Suh; Won Tae Chung; Yong Beom Park; Jung Yoon Choe; Seung Cheol Shim; Yuta Kochi; Akari Suzuki; Michiaki Kubo; Takayuki Sumida; Kazuhiko Yamamoto; Shin-Seok Lee; Young-Jin Kim; Bok Ghee Han; Mikhail G. Dozmorov
Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,478 SLE cases and 12,656 controls from six East Asian cohorts to identify new SLE susceptibility loci and better localize known loci. We identified ten new loci and confirmed 20 known loci with genome-wide significance. Among the new loci, the most significant locus was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta = 3.75 × 10−117, odds ratio (OR) = 2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We identified the most likely functional variants at each locus by analyzing epigenetic marks and gene expression data. Ten candidate variants are known to alter gene expression in cis or in trans. Enrichment analysis highlights the importance of these loci in B cell and T cell biology. The new loci, together with previously known loci, increase the explained heritability of SLE to 24%. The new loci share functional and ontological characteristics with previously reported loci and are possible drug targets for SLE therapeutics.
Rheumatology | 2010
Amit K. Maiti; Xana Kim-Howard; Parvathi Viswanathan; Laura Guillén; Xiaoxia Qian; Adriana Rojas-Villarraga; Celi Sun; Carlos A. Cañas; Gabriel J. Tobón; Koichi Matsuda; Nan Shen; Alejandra Claudia Cherñavsky; Juan-Manuel Anaya; Swapan K. Nath
OBJECTIVES Recently, a non-synonymous (Gly307Ser) variant, rs763361, in the CD226 gene was shown to be associated with multiple autoimmune diseases (ADs) in European Caucasian populations. However, shared autoimmunity with CD226 has not been evaluated in non-European populations. The aim of the present study is to assess the association of this single nucleotide polymorphism (SNP) with ADs in non-European populations. METHODS To replicate this association in non-European populations, we evaluated case-control association between rs763361 and coeliac disease (CED) samples from Argentina; SLE, RA, type-1 diabetes (T1D) and primary SS (pSS) from Colombia; and SLE samples from China and Japan. We genotyped rs763361 and evaluated its genetic association with multiple ADs, using chi(2)-test. For each association, odds ratio (OR) and 95% CI were calculated. RESULTS We show that rs763361 is significantly associated with Argentinean CED (P = 0.0009, OR = 1.60). We also observed a trend of possible association with Chinese SLE (P = 0.01, OR = 1.19), RA (P = 0.047, OR = 1.25), SLE (P = 0.0899, OR = 1.24) and pSS (P = 0.09, OR = 1.33) in Colombians. Meta-analyses for SLE (using our three populations) and T1D (our population and three published populations) yielded significant association with rs763361, P = 0.009 (OR = 1.16) and P = 1.1.46 x 10(-9) (OR = 1.14), respectively. CONCLUSIONS Our results demonstrate that the coding variant rs763361 in CD226 gene is associated with multiple ADs in non-European populations.
PLOS ONE | 2013
Bahram Namjou; Xana Kim-Howard; Celi Sun; Adam Adler; Sharon A. Chung; Kenneth M. Kaufman; Jennifer A. Kelly; Stuart B. Glenn; Joel M. Guthridge; Robert Hal Scofield; Robert P. Kimberly; Elizabeth E. Brown; Graciela S. Alarcón; Jeffrey C. Edberg; Jaehoon Kim; Ji-Young Choi; Rosalind Ramsey-Goldman; Michelle Petri; John D. Reveille; Luis M. Vilá; Susan A. Boackle; Barry I. Freedman; Betty P. Tsao; Carl D. Langefeld; Timothy J. Vyse; Chaim O. Jacob; Bernardo A. Pons-Estel; Timothy B. Niewold; Kathy Moser Sivils; Joan T. Merrill
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7×10−9, OR = 1.40 (95% CI = 1.25–1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67–0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7×10−5, OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
American Journal of Human Genetics | 2014
Joel M. Guthridge; Rufei Lu; Harry Sun; Celi Sun; Graham B. Wiley; Nicolas Dominguez; Susan Macwana; Christopher J. Lessard; Xana Kim-Howard; Beth L. Cobb; Kenneth M. Kaufman; Jennifer A. Kelly; Carl D. Langefeld; Adam Adler; Isaac T.W. Harley; Joan T. Merrill; Gary S. Gilkeson; Diane L. Kamen; Timothy B. Niewold; Elizabeth E. Brown; Jeffery Edberg; Michelle Petri; Rosalind Ramsey-Goldman; John D. Reveille; Luis M. Vilá; Robert P. Kimberly; Barry I. Freedman; Anne M. Stevens; Susan A. Boackle; Lindsey A. Criswell
Efforts to identify lupus-associated causal variants in the FAM167A/BLK locus on 8p21 are hampered by highly associated noncausal variants. In this report, we used a trans-population mapping and sequencing strategy to identify a common variant (rs922483) in the proximal BLK promoter and a tri-allelic variant (rs1382568) in the upstream alternative BLK promoter as putative causal variants for association with systemic lupus erythematosus. The risk allele (T) at rs922483 reduced proximal promoter activity and modulated alternative promoter usage. Allelic differences at rs1382568 resulted in altered promoter activity in B progenitor cell lines. Thus, our results demonstrated that both lupus-associated functional variants contribute to the autoimmune disease association by modulating transcription of BLK in B cells and thus potentially altering immune responses.
Human Molecular Genetics | 2017
Julio Molineros; Wanling Yang; Xu-jie Zhou; Celi Sun; Yukinori Okada; Huoru Zhang; Kek Heng Chua; Yu-Lung Lau; Yuta Kochi; Akari Suzuki; Kazuhiko Yamamoto; Jianyang Ma; So-Young Bang; Hye-Soon Lee; Kwangwoo Kim; Sang-Cheol Bae; Hong Zhang; Nan Shen; Loren L. Looger; Swapan K. Nath
We recently identified ten novel SLE susceptibility loci in Asians and uncovered several additional suggestive loci requiring further validation. This study aimed to replicate five of these suggestive loci in a Han Chinese cohort from Hong Kong, followed by meta-analysis (11,656 cases and 23,968 controls) on previously reported Asian and European populations, and to perform bioinformatic analyses on all 82 reported SLE loci to identify shared regulatory signatures. We performed a battery of analyses for these five loci, as well as joint analyses on all 82 SLE loci. All five loci passed genome-wide significance: MYNN (rs10936599, Pmeta = 1.92 × 10-13, OR = 1.14), ATG16L2 (rs11235604, Pmeta = 8.87 × 10 -12, OR = 0.78), CCL22 (rs223881, Pmeta = 5.87 × 10-16, OR = 0.87), ANKS1A (rs2762340, Pmeta = 4.93 × 10-15, OR = 0.87) and RNASEH2C (rs1308020, Pmeta = 2.96 × 10-19, OR = 0.84) and co-located with annotated gene regulatory elements. The novel loci share genetic signatures with other reported SLE loci, including effects on gene expression, transcription factor binding, and epigenetic characteristics. Most (56%) of the correlated (r2 > 0.8) SNPs from the 82 SLE loci were implicated in differential expression (9.81 × 10-198 < P < 5 × 10-3) of cis-genes. Transcription factor binding sites for p53, MEF2A and E2F1 were significantly (P < 0.05) over-represented in SLE loci, consistent with apoptosis playing a critical role in SLE. Enrichment analysis revealed common pathways, gene ontology, protein domains, and cell type-specific expression. In summary, we provide evidence of five novel SLE susceptibility loci. Integrated bioinformatics using all 82 loci revealed that SLE susceptibility loci share many gene regulatory features, suggestive of conserved mechanisms of SLE etiopathogenesis.
Scientific Reports | 2016
Xu Jie Zhou; Swapan K. Nath; Yuan Yuan Qi; Celi Sun; Ping Hou; Yue Miao Zhang; Ji Cheng Lv; Su Fang Shi; Lijun Liu; Ruoyan Chen; Wanling Yang; Kevin He; Yanming Li; Hong Zhang
Known susceptibility loci together can only explain about 6–8% of the disease heritability of IgA nephropathy (IgAN), suggesting that there are still a large number of genetic variants remained to be discovered. We previously identified IgAN and systemic lupus erythematosus (SLE)/lupus nephritis (LN) shared many loci based on GWAS on Chinese populations. The more recent study with high-density genotyping of immune-related loci in individuals with Asian ancestry identified 10 new and 6 suggestive loci in SLE. In the current study, we thus included all the lead SNPs from these 16 loci reported, and firstly tested their associations in 1,248 patients with sporadic IgAN, 737 patients with LN and 1,187 controls. Significant associations identified in IgAN were replicated in additional 500 patients and 2372 controls. rs12022418 in RGS1 (p = 3.0 × 10−6) and rs7170151 in RASGRP1 (p = 1.9 × 10−5) showed novel associations in IgAN. Compared to SNPs that were in LD with them, the associated variants showed higher potential of regulatory features by affecting gene expression. And systemic evaluation of GWAS data supported the pleiotropic effects of RGS1 and RASGRP1 variants in mediating human complex diseases. In conclusion, novel risk loci shared between IgAN and SLE/LN were identified, which may shed new light to exploit the potential pathogenesis for those two diseases.
Autoimmune Diseases | 2014
Julio Molineros; Kek Heng Chua; Celi Sun; Lay-Hoong Lian; Prasenjeet Motghare; Xana Kim-Howard; Swapan K. Nath
Systemic Lupus Erythematosus (SLE) is a clinically heterogeneous autoimmune disease with strong genetic and environmental components. Our objective was to replicate 25 recently identified SLE susceptibility genes in two distinct populations (Chinese (CH) and Malays (MA)) from Malaysia. We genotyped 347 SLE cases and 356 controls (CH and MA) using the ImmunoChip array and performed an admixture corrected case-control association analysis. Associated genes were grouped into five immune-related pathways. While CH were largely homogenous, MA had three ancestry components (average 82.3% Asian, 14.5% European, and 3.2% African). Ancestry proportions were significantly different between cases and controls in MA. We identified 22 genes with at least one associated SNP (P < 0.05). The strongest signal was at HLA-DRA (P Meta = 9.96 × 10−9; P CH = 6.57 × 10−8, P MA = 6.73 × 10−3); the strongest non-HLA signal occurred at STAT4 (P Meta = 1.67 × 10−7; P CH = 2.88 × 10−6, P MA = 2.99 × 10−3). Most of these genes were associated with B- and T-cell function and signaling pathways. Our exploratory study using high-density fine-mapping suggests that most of the established SLE genes are also associated in the major ethnicities of Malaysia. However, these novel SNPs showed stronger association in these Asian populations than with the SNPs reported in previous studies.
Scientific Reports | 2017
Yue-miao Zhang; Xu-jie Zhou; Swapan K. Nath; Celi Sun; Ming-Hui Zhao; Hong Zhang
Ten novel loci have been found to be associated with systemic lupus erythematosus (SLE) susceptibility by a recent genome-wide association study conducted in Europeans. To test their disease associations and genetic similarities/differences in Asians and Europeans, we genotyped the 10 novel single nucleotide polymorphisms (SNPs) and performed an association study. A Chinese cohort from Northern China was recruited as the discovery population, and three East Asian cohorts were included for independent replication. The 10 SNPs were genotyped using TaqMan allele discrimination assays. To prioritize the associated SNPs, different layers of the public functional data were integrated. Among the 10 SNPs, rs564799 in IL12A was shared in both ethnicities (Padjust = 5.91 × 10−4; odds ratio = 1.22, 1.10–1.35). We also confirmed the reported polymorphism rs7726414 in TCF7 in the current study (Padjust = 4.12 × 10−8; odds ratio = 1.46, 1.28–1.66). The directions and magnitudes of the allelic effects for most of the 10 SNPs were comparable between Europeans and Asians. However, higher risk allele frequencies and population-attributable risk percentages were observed in Asians than in Europeans. We also identified the most likely functional SNPs at each locus. In conclusion, both genetic similarities and differences across ethnicities have been observed, providing further evidence for a genetic basis of the high incidence of SLE in Asian ancestry.
Arthritis & Rheumatism | 2018
Yuan-yuan Qi; Xu-jie Zhou; Swapan K. Nath; Celi Sun; Yan‐na Wang; Ping Hou; Rong Mu; Chun Li; Jianping Guo; Zhanguo Li; Geng Wang; Huji Xu; Yan-Jie Hao; Zhuoli Zhang; Wei‐hua Yue; Huoru Zhang; Ming-Hui Zhao; Hong Zhang
Recent evidence from genetic, cell biology, and animal model studies has suggested a pivotal role of autophagy in mediating systemic lupus erythematosus (SLE). However, the genetic basis has not yet been thoroughly examined. Therefore, the aim of the present study was to identify additional susceptibility variants in autophagy‐related genes along with their functional significance.