Célia Duclos
University of Rouen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Célia Duclos.
Glia | 2010
Nicolas Guérout; Céline Derambure; Laurent Drouot; Nicolas Bon-Mardion; Célia Duclos; Olivier Boyer; Jean-Paul Marie
Olfactory ensheathing cells (OEC) have the ability to promote regeneration in the nervous system. Hence, they hold promise for cell therapy. Most of the experimental studies have investigated the role of OECs taken from olfactory bulb (OB). However, for a clinical human application, olfactory mucosa (OM) seems to be the only acceptable source for OECs. Many studies have compared the distinct ability of OECs from OB and OM to improve functional nerve regeneration after lesion of the nervous system. Nevertheless, the two populations of OECs may differ in several points, which might affect all fate after transplantation in vivo. We report here the first study which compares gene expression profiling between these two populations of OECs. It appears that OB‐OECs and OM‐OECs display distinct gene expression pattern, which suggest that they may be implicated in different physiological processes. Notably, OM‐OECs overexpress genes characteristic of wound healing and regulation of extra cellular matrix. In contrast, OB‐OECs gene profile suggests a prominent role in nervous system development. Hence, OB‐OECs and OM‐OECs fundamentally differ in their gene expression pattern, which may represent a crucial point for future clinical application.
Glia | 2012
A. Honoré; Stéphanie Le corre; Céline Derambure; Romain Normand; Célia Duclos; Olivier Boyer; Jean-Paul Marie; Nicolas Guérout
Olfactory ensheathing cells (OECs) play a crucial role during neurogenesis of primary olfactory neurons. Transplantation of OECs is considered as a promising new therapy for central nervous system repair. Nevertheless, OECs are constituted of distinct subpopulations and their role during neurogenesis is not clearly understood. In particular, OECs from the olfactory bulb (OB) constitute a heterogeneous, but not yet isolated and characterized, population of cells. In our study, flow cytometry analyses of primary OB cultures, based on cell surface expression of low‐affinity nerve growth factor receptor (p75), reveal the presence of two distinct populations of OECs. Indeed, some of them express a high level of p75 (P75High) and the other a low level of p75 (P75Low). Effects of OB microenvironment were assessed, and we were able to show that fibroblasts mediate the induction of these two populations through the secretion of soluble factors. To characterize P75High and P75Low OECs, cells were sorted based on their differential expression of p75. Microarray analyses revealed that P75High OECs overexpress genes implicated in modulation of extracellular matrix and cell sorting, whereas P75Low OECs overexpress genes involved in regulation of the inflammatory response and axonal guidance. These results permit, for the first time, to isolate the two distinct subpopulations of OECs from OB, and suggest their specific role during neurogenesis.
PLOS ONE | 2011
Nicolas Guérout; Alexandre Paviot; Nicolas Bon-Mardion; Célia Duclos; Damien Genty; Laetitia Jean; Olivier Boyer; Jean-Paul Marie
Olfactory ensheathing cells (OECs) represent an interesting candidate for cell therapy and could be obtained from olfactory mucosa (OM-OECs) or olfactory bulbs (OB-OECs). Recent reports suggest that, depending on their origin, OECs display different functional properties. We show here the complementary and additive effects of co-transplanting OM-OECs and OB-OECs after lesion of a peripheral nerve. For this, a selective motor denervation of the laryngeal muscles was performed by a section/anastomosis of the recurrent laryngeal nerve (RLN). Two months after surgery, recovery of the laryngeal movements and synkinesis phenonema were analyzed by videolaryngoscopy. To complete these assessments, measure of latency and potential duration were determined by electrophysiological recordings and myelinated nerve fiber profiles were defined based on toluidine blue staining. To explain some of the mechanisms involved, tracking of GFP positive OECs was performed. It appears that transplantation of OM-OECs or OB-OECs displayed opposite abilities to improve functional recovery. Indeed, OM-OECs increased recuperation of laryngeal muscles activities without appropriate functional recovery. In contrast, OB-OECs induced some functional recovery by enhancing axonal regrowth. Importantly, co-transplantation of OM-OECs and OB-OECs supported a major functional recovery, with reduction of synkinesis phenomena. This study is the first which clearly demonstrates the complementary and additive properties of OECs obtained from olfactory mucosa and olfactory bulb to improve functional recovery after transplantation in a nerve lesion model.
Muscle & Nerve | 2011
Nicolas Guérout; Célia Duclos; Laurent Drouot; Olivia Abramovici; Nicolas Bon-Mardion; Yann Lacoume; Laetitia Jean; Olivier Boyer; Jean-Paul Marie
Introduction: Olfactory ensheathing cells (OECs) hold promise for cell therapy because they may promote regeneration of the central nervous system. However, OECs have been less studied after peripheral nerve injury (PNI). The purpose of this investigation was to determine the effect of OEC transplantation on a severe sciatic nerve (SN) lesion. Methods: OECs were injected in rats after section and 2‐cm resection of the SN. Results: Three months after therapy, muscle strength and morphometric studies showed complete restoration of the contractile properties of the gastrocnemius and complete repair of the SN. Immunohistochemistry and RT‐PCR studies indicated an increase in the presence of neurotrophic factors. Interestingly, tracking of green fluorescent protein (GFP)‐positive OECs showed that no OECs were present in the SN. Discussion: Our results demonstrate that, after severe PNI, OECs have remarkable potential for nerve regeneration by creating a favorable microenvironment. Muscle Nerve, 2011
PLOS ONE | 2013
Anne Mayeur; Célia Duclos; A. Honoré; Maxime Gauberti; Laurent Drouot; Jean-Claude do Rego; Nicolas Bon-Mardion; Laetitia Jean; Eric Verin; Evelyne Emery; Denis Vivien; Olivier Boyer; Jean-Paul Marie; Nicolas Guérout
Spinal cord injury (SCI) induces a permanent disability in patients. To this day no curative treatment can be proposed to restore lost functions. Therefore, extensive experimental studies have been conducted to induce recovery after SCI. One of the most promising therapies is based on the use of olfactory ensheathing cells (OECs). OECs can be obtained from either the olfactory bulbs (OB-OECs) or from olfactory mucosa (OM-OECs), involving a less invasive approach for autotransplantation. However the vast majority of experimental transplantations have been focusing on OB-OECs although the OM represents a more accessible source of OECs. Importantly, the ability of OM-OECs in comparison to OB-OECs to induce spinal cord recovery in the same lesion paradigm has never been described. We here present data using a multiparametric approach, based on electrophysiological, behavioral, histological and magnetic resonance imaging experiments on the repair potential of OB-OECs and OM-OECs from either primary or purified cultures after a severe model of SCI. Our data demonstrate that transplantation of OECs obtained from OB or OM induces electrophysiological and functional recovery, reduces astrocyte reactivity and glial scar formation and improves axonal regrowth. We also show that the purification step is essential for OM-OECs while not required for OB-OECs. Altogether, our study strongly indicates that transplantation of OECs from OM represents the best benefit/risk ratio according to the safety of access of OM and the results induced by transplantations of OM-OECs. Indeed, purified OM-OECs in addition to induce recovery can integrate and survive up to 60 days into the spinal cord. Therefore, our results provide strong support for these cells as a viable therapy for SCI.
Neurobiology of Disease | 2011
Alexandre Paviot; Nicolas Guérout; Nicolas Bon-Mardion; Célia Duclos; Laetitia Jean; Olivier Boyer; Jean-Paul Marie
The real ability of OECs provided by olfactory mucosa cultures (OM-OECs) and those from olfactory bulb cultures (OB-OECs) must be better characterized in order to propose their future clinical application. Therefore, we used a lesion of the vagus nerve (VN), which constitutes a severe motor denervation due to long distance of the muscular targets (4.5 cm). We performed a section/anastomosis surgery of the VN, at the third tracheal ring. Then, OM-OECs and OB-OECs were injected in matrigel around the lesion site. Three months after surgery, laryngeal muscle activity, synkinesis phenomena and latency were evaluated by videolaryngoscopy and electromyography recordings. To complete these procedures, axonal morphometric study of the right recurrent nerve was performed to assess axonal regrowth and tracking of green fluorescent protein positive cells was performed. Recurrent nerve is the motor branch innervating the laryngeal muscles, and is located distally to the lesion, near the muscular targets (0.7 cm). These analyses permitted to compare the ability of these two populations to improve functional recovery and axonal regrowth. Our results show that, OM-OECs improved electrical muscular activity and nervous conduction with significant tissue healing but induced aberrant movement and poor functional recovery. In contrast, OB-OECs induced a partial functional recovery associated with an increase in the number of myelinated fibers and nervous conduction. Our study suggests that, as recently reported in a microarray study, OM-OECs and OB-OECs express different properties. In particular, OM-OECs could regulate inflammation processes and extracellular matrix formation but have a poor regeneration potential, whereas, OB-OECs could improve functional recovery by inducing targeted axonal regrowth.
Annals of Otology, Rhinology, and Laryngology | 2011
Anne-Christine de Corgnol; Nicolas Guérout; Célia Duclos; Eric Verin; Jean-Paul Marie
Objectives: Olfactory ensheathing cells have been used successfully for recovery of nervous system lesions. The aim of our study was to determine whether olfactory ensheathing cells from the olfactory bulb or olfactory mucosa were able to improve functional recovery in a laryngeal reinnervation animal model. Methods: Fifty-nine rats were divided into 6 groups. A group without nerve section (group 1; n = 10) and a group without anastomosis (group 2; n = 11) served as controls. Right vagus nerve section and immediate anastomosis (nonselective reinnervation) was performed in 4 other groups, as follows. In group 3 (n = 10), there was selective reinnervation without any addition of substance; groups 4 (n = 10), 5 (n = 10), and 6 (n = 8) received, on the section and anastomosis site, and at the same time, cultivated olfactory bulb, cultivated olfactory mucosa, and noncultivated olfactory mucosa from inbred rats, respectively. Three months later, videolaryngoscopy with vocal fold movement measurements, electromyography, and histologic examination were performed. Results: The best right vocal fold angular movement (3.05° ± 1.14°) was observed in group 5 with cultivated olfactory mucosa, versus group 3 (–0.28° ± 1.51°; p = 0.06). The relative angular vocal fold movement was better in group 5 (p = 0.05). The mobility score was 0.6 ± 0.27 for group 3 and 1.4 ± 0.31 for group 5 (p = 0.07). Less synkinesis was observed in the reinnervated groups with cell addition, particularly with noncultivated olfactory mucosa (group 6; p = 0.05). Conclusions: Olfactory ensheathing cells obtained from olfactory mucosa cultures seem to improve functional laryngeal reinnervation in a rat model of nonselective vagus nerve section and anastomosis.
Journal of Visualized Experiments | 2014
Nicolas Guérout; Alexandre Paviot; Nicolas Bon-Mardion; A. Honoré; Rais Obongo; Célia Duclos; Jean-Paul Marie
Olfactory ensheathing cells (OECs) are neural crest cells which allow growth and regrowth of the primary olfactory neurons. Indeed, the primary olfactory system is characterized by its ability to give rise to new neurons even in adult animals. This particular ability is partly due to the presence of OECs which create a favorable microenvironment for neurogenesis. This property of OECs has been used for cellular transplantation such as in spinal cord injury models. Although the peripheral nervous system has a greater capacity to regenerate after nerve injury than the central nervous system, complete sections induce misrouting during axonal regrowth in particular after facial of laryngeal nerve transection. Specifically, full sectioning of the recurrent laryngeal nerve (RLN) induces aberrant axonal regrowth resulting in synkinesis of the vocal cords. In this specific model, we showed that OECs transplantation efficiently increases axonal regrowth. OECs are constituted of several subpopulations present in both the olfactory mucosa (OM-OECs) and the olfactory bulbs (OB-OECs). We present here a model of cellular transplantation based on the use of these different subpopulations of OECs in a RLN injury model. Using this paradigm, primary cultures of OB-OECs and OM-OECs were transplanted in Matrigel after section and anastomosis of the RLN. Two months after surgery, we evaluated transplanted animals by complementary analyses based on videolaryngoscopy, electromyography (EMG), and histological studies. First, videolaryngoscopy allowed us to evaluate laryngeal functions, in particular muscular cocontractions phenomena. Then, EMG analyses demonstrated richness and synchronization of muscular activities. Finally, histological studies based on toluidine blue staining allowed the quantification of the number and profile of myelinated fibers. All together, we describe here how to isolate, culture, identify and transplant OECs from OM and OB after RLN section-anastomosis and how to evaluate and analyze the efficiency of these transplanted cells on axonal regrowth and laryngeal functions.
Neurogastroenterology and Motility | 2013
I. Ghannouchi; Célia Duclos; Jean-Paul Marie; Eric Verin
Background It has been demonstrated that aspirations could occur during respiratory failure, explained by a lack of co‐ordination between swallowing and ventilation. To test this hypothesis, we examined the co‐ordination of ventilation and swallowing in a completely unrestrained rat model during different level of hypercapnia, during hypoxia, and during tachypnea.
Muscle & Nerve | 2018
Rais Obongo; Nicolas Bon-Mardion; Célia Duclos; Vladimir Strunski; Nicolas Guérout; Jean-Paul Marie
Introduction: With a view to simplifying surgical techniques for selective laryngeal reinnervation, we addressed the question of whether it is feasible to receive additional innervation by a partially denervated muscle using an infrahyoid muscle model. Methods: In 90 rats (6 groups of 15), phrenic nerve transfer was used to reinnervate the sternothyroid muscle. In some cases, residual innervation by the original nerve was present. Three months later we performed electromyographic studies, contraction strength measurements, histologic assessment, and retrograde labeling. Results: Muscles reinnervated by the phrenic nerve had a greater “dual‐response” rate (in terms of nerve latency, contraction strength, and retrograde labeling) than muscles in the control groups. Discussion: The phrenic nerve can impart its inspiratory properties to an initially denervated strap muscle—even when residual innervation is present. The preservation of contractile potential confirmed the feasibility of dual innervation in a previously injured muscle. Muscle Nerve 59:108–115, 2019