Céline Barnadas
Walter and Eliza Hall Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Céline Barnadas.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Didier Ménard; Céline Barnadas; Christiane Bouchier; Cara N. Henry-Halldin; Laurie R. Gray; Arsène Ratsimbasoa; Vincent Thonier; Jean François Carod; Olivier Domarle; Yves Colin; Olivier Bertrand; Julien Picot; Christopher L. King; Brian T. Grimberg; Odile Mercereau-Puijalon; Peter A. Zimmerman
Malaria therapy, experimental, and epidemiological studies have shown that erythrocyte Duffy blood group-negative people, largely of African ancestry, are resistant to erythrocyte Plasmodium vivax infection. These findings established a paradigm that the Duffy antigen is required for P. vivax erythrocyte invasion. P. vivax is endemic in Madagascar, where admixture of Duffy-negative and Duffy-positive populations of diverse ethnic backgrounds has occurred over 2 millennia. There, we investigated susceptibility to P. vivax blood-stage infection and disease in association with Duffy blood group polymorphism. Duffy blood group genotyping identified 72% Duffy-negative individuals (FY*BES/*BES) in community surveys conducted at eight sentinel sites. Flow cytometry and adsorption–elution results confirmed the absence of Duffy antigen expression on Duffy-negative erythrocytes. P. vivax PCR positivity was observed in 8.8% (42/476) of asymptomatic Duffy-negative people. Clinical vivax malaria was identified in Duffy-negative subjects with nine P. vivax monoinfections and eight mixed Plasmodium species infections that included P. vivax (4.9 and 4.4% of 183 participants, respectively). Microscopy examination of blood smears confirmed blood-stage development of P. vivax, including gametocytes. Genotyping of polymorphic surface and microsatellite markers suggested that multiple P. vivax strains were infecting Duffy-negative people. In Madagascar, P. vivax has broken through its dependence on the Duffy antigen for establishing human blood-stage infection and disease. Further studies are necessary to identify the parasite and host molecules that enable this Duffy-independent P. vivax invasion of human erythrocytes.
Nature Communications | 2011
Rosalind E. Howes; Anand P. Patil; Frédéric B. Piel; Oscar A. Nyangiri; Caroline W. Kabaria; Peter W. Gething; Peter A. Zimmerman; Céline Barnadas; Cynthia M. Beall; Amha Gebremedhin; Didier Ménard; Thomas N. Williams; D. J. Weatherall; Simon I. Hay
Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite.
The New England Journal of Medicine | 2016
Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim
BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).
Antimicrobial Agents and Chemotherapy | 2008
Céline Barnadas; Arsène Ratsimbasoa; Magali Tichit; Christiane Bouchier; Martial Jahevitra; Stéphane Picot; Didier Ménard
ABSTRACT No data were available concerning Plasmodium vivax resistance to chloroquine (CQ) in Madagascar. We investigated the therapeutic efficacy of CQ in P. vivax malaria, the prevalence of mutations in the pvcrt-o and pvmdr1 genes before treatment, and the association between mutant parasites and the clinical response of the patients to CQ treatment. Clinical isolates were collected at six sentinel sites located in the three epidemiological strata for malaria throughout Madagascar in 2006. Patients were enrolled, treated, and followed up according to the WHO 2001 guidelines for P. vivax infections. Sequencing was used to analyze polymorphisms of the pvcrt-o (exons 1 to 6) and pvmdr1 genes. The treatment failure rate, after adjustment for genotyping, was estimated at 5.1% for the 105 patients included, ranging from zero in the South to 14.8% in the foothills of the Central Highlands. All samples were wild type for pvcrt-o but mutant for the pvmdr1 gene. Ten nonsynonymous mutations were found in the pvmdr1 gene, including five new mutations, four of which were present at low frequencies (1.3% to 7.5%) while the S513R mutation was present at a much higher frequency (96.3%). The other five mutations, including Y976F, had been described before and had frequencies of 97.8% to 100%. Our findings suggest that CQ-resistant P. vivax isolates are present in Madagascar, particularly in the foothills of the Central Highlands. The 976Y pvmdr1 mutation was found not to be useful for monitoring CQ resistance. Further efforts are required to develop suitable tools for monitoring drug resistance in P. vivax malaria.
Malaria Journal | 2010
Anna Rosanas-Urgell; Dania Mueller; Inoni Betuela; Céline Barnadas; Jonah Iga; Peter A. Zimmerman; Hernando A. del Portillo; Peter Siba; Ivo Mueller; Ingrid Felger
BackgroundAccurate diagnosis of Plasmodium infections is essential for malaria morbidity and mortality reduction in tropical areas. Despite great advantages of light microscopy (LM) for malaria diagnosis, its limited sensitivity is a critical shortfall for epidemiological studies. Robust molecular diagnostics tools are thus needed.MethodsThe present study describes the development of a duplex quantitative real time PCR (qPCR) assay, which specifically detects and quantifies the four human Plasmodium species. Performance of this method was compared to PCR-ligase detection reaction-fluorescent microsphere assay (PCR_LDR_FMA), nested PCR (nPCR) and LM, using field samples collected from 452 children one to five years of age from the Sepik area in Papua New Guinea. Agreement between diagnostic methods was calcualted using kappa statistics.ResultsThe agreement of qPCR with other molecular diagnostic methods was substantial for the detection of P. falciparum, but was moderate for the detection of P. vivax, P. malariae and P. ovale. P. falciparum and P. vivax prevalence by qPCR was 40.9% and 65.7% respectively. This compares to 43.8% and 73.2% by nPCR and 47.1% and 67.5% by PCR_LDR_FMA. P. malariae and P. ovale prevalence was 4.7% and 7.3% by qPCR, 3.3% and 3.8% by nPCR, and 7.7% and 4.4% by PCR_LDR_FMA. Prevalence by LM was lower for all four species, being 25.4% for P. falciparum, 54.9% for P. vivax, 2.4% for P. malariae and 0.0% for P. ovale. The quantification by qPCR closely correlated with microscopic quantification for P. falciparum and P. vivax samples (R2 = 0.825 and R2 = 0.505, respectively). The low prevalence of P. malariae and P. ovale did not permit a solid comparative analysis of quantification for these species.ConclusionsThe qPCR assay developed proved optimal for detection of all four Plasmodium species. Densities by LM were well reflected in quantification results by qPCR, whereby congruence was better for P. falciparum than for P. vivax. This likely is a consequence of the generally lower P. vivax densities. Easy performance of the qPCR assay, a less laborious workflow and reduced risk of contamination, together with reduced costs per sample through reduced reaction volume, opens the possibility to implement qPCR in endemic settings as a suitable diagnostic tool for large epidemiological studies.
Nature Genetics | 2016
Daniel N. Hupalo; Zunping Luo; Alexandre Melnikov; Patrick L. Sutton; Peter Rogov; Ananias A. Escalante; Andrés F. Vallejo; Sócrates Herrera; Myriam Arévalo-Herrera; Qi Fan; Ying Wang; Liwang Cui; Carmen Lucas; Salomon Durand; Juan F. Sanchez; G. Christian Baldeviano; Andres G. Lescano; Moses Laman; Céline Barnadas; Alyssa E. Barry; Ivo Mueller; James W. Kazura; Alex Eapen; Deena Kanagaraj; Neena Valecha; Marcelo U. Ferreira; Wanlapa Roobsoong; Wang Nguitragool; Jetsumon Sattabonkot; Dionicia Gamboa
Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally.
Malaria Journal | 2008
Céline Barnadas; Magali Tichit; Christiane Bouchier; Arsène Ratsimbasoa; Laurence Randrianasolo; Rogelin Raherinjafy; Martial Jahevitra; Stéphane Picot; Didier Ménard
BackgroundFour of five Plasmodium species infecting humans are present in Madagascar. Plasmodium vivax remains the second most prevalent species, but is understudied. No data is available on its susceptibility to sulphadoxine-pyrimethamine, the drug recommended for intermittent preventive treatment during pregnancy. In this study, the prevalence of P. vivax infection and the polymorphisms in the pvdhfr and pvdhps genes were investigated. The correlation between these polymorphisms and clinical and parasitological responses was also investigated in P. vivax-infected patients.MethodsPlasmodium vivax clinical isolates were collected in eight sentinel sites from the four major epidemiological areas for malaria across Madagascar in 2006/2007. Pvdhfr and pvdhps genes were sequenced for polymorphism analysis. The therapeutic efficacy of SP in P. vivax infections was assessed in Tsiroanomandidy, in the foothill of the central highlands. An intention-to-treat analysis of treatment outcome was carried out.ResultsA total of 159 P. vivax samples were sequenced in the pvdhfr/pvdhps genes. Mutant-types in pvdhfr gene were found in 71% of samples, and in pvdhps gene in 16% of samples. Six non-synonymous mutations were identified in pvdhfr, including two novel mutations at codons 21 and 130. For pvdhps, beside the known mutation at codon 383, a new one was found at codon 422. For the two genes, different combinations were ranged from wild-type to quadruple mutant-type. Among the 16 patients enrolled in the sulphadoxine-pyrimethamine clinical trial (28 days of follow-up) and after adjustment by genotyping, 3 (19%, 95% CI: 5%–43%) of them were classified as treatment failure and were pvdhfr 58R/117N double mutant carriers with or without the pvdhps 383G mutation.ConclusionThis study highlights (i) that genotyping in the pvdhfr and pvdhps genes remains a useful tool to monitor the emergence and the spread of P. vivax sulphadoxine-pyrimethamine resistant in order to improve the national antimalarial drug policy, (ii) the issue of using sulphadoxine-pyrimethamine as a monotherapy for intermittent preventive treatment of pregnant women or children.
Malaria Journal | 2008
Natacha Mariette; Céline Barnadas; Christiane Bouchier; Magali Tichit; Didier Ménard
BackgroundRapid diagnostic tests (RDTs) are becoming increasingly indispensable in malaria management, as a means of increasing the accuracy of diagnosis. The WHO has issued recommendations, but the selection of the most suitable RDT remains difficult for users in endemic countries. The genetic variability of the antigens detected with RDTs has been little studied, but may affect the sensitivity of RDTs. This factor has been studied by comparisons between countries at continental level, but little information is available concerning antigen variability within a given country.MethodsA country-wide assessment of polymorphism of the PfHRP2, PfHRP3, pLDH and aldolase antigens was carried out in 260 Plasmodium falciparum and 127 Plasmodium vivax isolates, by sequencing the genes encoding these antigens in parasites originating from the various epidemiological strata for malaria in Madagascar.ResultsHigher levels of polymorphism were observed for the pfhrp2 and pfhrp3 genes than for the P. falciparum and P. vivax aldolase and pldh genes. Pfhrp2 sequence analysis predicted that 9% of Malagasy isolates would not be detected at parasite densities ≤ 250 parasites/μl (ranging from 6% in the north to 14% in the south), although RDTs based on PfHRP2 detection are now recommended in Madagascar.ConclusionThese findings highlight the importance of training of health workers and the end users of RDTs in the provision of information about the possibility of false-negative results for patients with clinical symptoms of malaria, particularly in the south of Madagascar.
PLOS Neglected Tropical Diseases | 2015
Priscila T. Rodrigues; Tiago Antao; Pamela Orjuela-Sánchez; Peter Van den Eede; Dionicia Gamboa; Nguyen Van Hong; Annette Erhart; Céline Barnadas; Arsène Ratsimbasoa; Didier Ménard; Carlo Severini; Michela Menegon; Bakri Y. M. Nour; Nadira D. Karunaweera; Ivo Mueller; Marcelo U. Ferreira; Ingrid Felger
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (F ST>0.2). Outside Central Asia F ST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations.
PLOS Medicine | 2012
Nicolas Senn; Patricia Rarau; Danielle I. Stanisic; Leanne J. Robinson; Céline Barnadas; Doris Manong; Mary Salib; Jonah Iga; Nandao Tarongka; Serej Ley; Anna Rosanas-Urgell; John J. Aponte; Peter A. Zimmerman; James G. Beeson; Louis Schofield; Peter Siba; Stephen J. Rogerson; John C. Reeder; Ivo Mueller
A three-arm randomized trial conducted among infants in Papua New Guinea estimates the preventive effect against malaria episodes of intermittent preventive treatment, in an area where children are exposed to both falciparum and vivax malaria.