Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Céline Bonfils is active.

Publication


Featured researches published by Céline Bonfils.


Science | 2008

Human-Induced Changes in the Hydrology of the Western United States

Tim P. Barnett; David W. Pierce; Hugo G. Hidalgo; Céline Bonfils; Benjamin D. Santer; Tapash Das; G. Bala; Andrew W. Wood; Toru Nozawa; Arthur A. Mirin; Daniel R. Cayan; Michael D. Dettinger

Observations have shown that the hydrological cycle of the western United States changed significantly over the last half of the 20th century. We present a regional, multivariable climate change detection and attribution study, using a high-resolution hydrologic model forced by global climate models, focusing on the changes that have already affected this primarily arid region with a large and growing population. The results show that up to 60% of the climate-related trends of river flow, winter air temperature, and snow pack between 1950 and 1999 are human-induced. These results are robust to perturbation of study variates and methods. They portend, in conjunction with previous work, a coming crisis in water supply for the western United States.


Journal of Climate | 2009

Detection and Attribution of Streamflow Timing Changes to Climate Change in the Western United States

Hugo G. Hidalgo; Tapas Kumar Das; Michael D. Dettinger; Daniel R. Cayan; David W. Pierce; Tim P. Barnett; G. Bala; Arthur A. Mirin; Andrew W. Wood; Céline Bonfils; B. D. Santer; Toru Nozawa

Abstract This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow “center” timing (the day in the “water-year” on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States—the California region, the upper Colorado River basin, ...


Journal of Climate | 2008

Attribution of Declining Western U.S. Snowpack to Human Effects

David W. Pierce; Tim P. Barnett; Hugo G. Hidalgo; Tapash Das; Céline Bonfils; Benjamin D. Santer; G. Bala; Michael D. Dettinger; Daniel R. Cayan; Art Mirin; Andrew W. Wood; Toru Nozawa

Observations show snowpack has declined across much of the western United States over the period 1950–99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D–A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean–atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D–A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions

B. D. Santer; T. M. L. Wigley; Peter J. Gleckler; Céline Bonfils; Michael F. Wehner; Krishna AchutaRao; Tim P. Barnett; James S. Boyle; Wolfgang Brüggemann; M. Fiorino; Nathan P. Gillett; James E. Hansen; P. D. Jones; Stephen A. Klein; Gerald A. Meehl; S. C. B. Raper; Richard W. Reynolds; Karl E. Taylor; Warren M. Washington

Previous research has identified links between changes in sea surface temperature (SST) and hurricane intensity. We use climate models to study the possible causes of SST changes in Atlantic and Pacific tropical cyclogenesis regions. The observed SST increases in these regions range from 0.32°C to 0.67°C over the 20th century. The 22 climate models examined here suggest that century-timescale SST changes of this magnitude cannot be explained solely by unforced variability of the climate system. We employ model simulations of natural internal variability to make probabilistic estimates of the contribution of external forcing to observed SST changes. For the period 1906–2005, we find an 84% chance that external forcing explains at least 67% of observed SST increases in the two tropical cyclogenesis regions. Model “20th-century” simulations, with external forcing by combined anthropogenic and natural factors, are generally capable of replicating observed SST increases. In experiments in which forcing factors are varied individually rather than jointly, human-caused changes in greenhouse gases are the main driver of the 20th-century SST increases in both tropical cyclogenesis regions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Incorporating model quality information in climate change detection and attribution studies

B. D. Santer; Karl E. Taylor; Peter J. Gleckler; Céline Bonfils; Tim P. Barnett; David W. Pierce; T. M. L. Wigley; Carl A. Mears; Frank J. Wentz; Wolfgang Brüggemann; N. P. Gillett; Stephen A. Klein; Susan Solomon; Peter A. Stott; Michael F. Wehner

In a recent multimodel detection and attribution (D&A) study using the pooled results from 22 different climate models, the simulated “fingerprint” pattern of anthropogenically caused changes in water vapor was identifiable with high statistical confidence in satellite data. Each model received equal weight in the D&A analysis, despite large differences in the skill with which they simulate key aspects of observed climate. Here, we examine whether water vapor D&A results are sensitive to model quality. The “top 10” and “bottom 10” models are selected with three different sets of skill measures and two different ranking approaches. The entire D&A analysis is then repeated with each of these different sets of more or less skillful models. Our performance metrics include the ability to simulate the mean state, the annual cycle, and the variability associated with El Niño. We find that estimates of an anthropogenic water vapor fingerprint are insensitive to current model uncertainties, and are governed by basic physical processes that are well-represented in climate models. Because the fingerprint is both robust to current model uncertainties and dissimilar to the dominant noise patterns, our ability to identify an anthropogenic influence on observed multidecadal changes in water vapor is not affected by “screening” based on model quality.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Empirical evidence for a recent slowdown in irrigation-induced cooling

Céline Bonfils; David B. Lobell

Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (−0.14°C to −0.25°C per decade), which corresponds to an estimated cooling of −1.8°C to −3.2°C since the introduction of irrigation practices. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (−0.06°C to −0.19°C per decade). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for many irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broad-scale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide ≈40% of global food production.


Journal of Climate | 2008

The Effect of Irrigation on Regional Temperatures: A Spatial and Temporal Analysis of Trends in California, 1934–2002

David B. Lobell; Céline Bonfils

Abstract The response of air temperatures to widespread irrigation may represent an important component of past and/or future regional climate changes. The quantitative impact of irrigation on daily minimum and maximum temperatures (Tmin and Tmax) in California was estimated using historical time series of county irrigated areas from agricultural censuses and daily climate observations from the U.S. Historical Climatology Network. Regression analysis of temperature and irrigation changes for stations within irrigated areas revealed a highly significant (p 0.3). The mean estimate for Tmax was a substantial 5.0°C cooling for 100% irrigation cover, with a 95% confidence interval of 2.0°–7.9°C. As a result of small changes in Tmin compared to Tmax, the diurnal temperature range (DTR) decreased significantly in both spring and summer months. Effects on percentiles of Tmax within summer months were not statistical...


Journal of Climate | 2008

Detection and Attribution of Temperature Changes in the Mountainous Western United States

Céline Bonfils; Benjamin D. Santer; David W. Pierce; Hugo G. Hidalgo; G. Bala; Tapash Das; Tim P. Barnett; Daniel R. Cayan; Charles Doutriaux; Andrew W. Wood; Art Mirin; Toru Nozawa

Abstract Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in...


Environmental Research Letters | 2012

On the influence of shrub height and expansion on northern high latitude climate

Céline Bonfils; Thomas J. Phillips; David M. Lawrence; Philip Cameron-Smith; William J. Riley; Zachary M. Subin

There is a growing body of empirical evidence documenting the expansion of shrub vegetation in the circumpolar Arctic in response to climate change. Here, we conduct a series of idealized experiments with the Community Climate System Model to analyze the potential impact on boreal climate of a large-scale tundra-to-shrub conversion. The model responds to an increase in shrub abundance with substantial atmospheric heating arising from two seasonal land?atmosphere feedbacks: a decrease in surface albedo and an evapotranspiration-induced increase in atmospheric moisture content. We demonstrate that the strength and timing of these feedbacks are sensitive to shrub height and the time at which branches and leaves protrude above the snow. Taller and aerodynamically rougher shrubs lower the albedo earlier in the spring and transpire more efficiently than shorter shrubs. These mechanisms increase, in turn, the strength of the indirect sea-ice albedo and ocean evaporation feedbacks contributing to additional regional warming. Finally, we find that an invasion of tall shrubs tends to systematically warm the soil, deepen the active layer, and destabilize the permafrost (with increased formation of taliks under a future scenario) more substantially than an invasion of short shrubs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Identifying external influences on global precipitation

Kate Marvel; Céline Bonfils

Significance This study provides evidence that human activities are affecting precipitation over land and oceans. Anthropogenic increases in greenhouse gases and stratospheric ozone depletion are expected to lead to a latitudinal intensification and redistribution of global precipitation. However, detecting these mechanisms in the observational record is complicated by strong climate noise and model errors. We establish that the changes in land and ocean precipitation predicted by theory are indeed present in the observational record, that these changes are unlikely to arise purely due to natural climate variability, and that external influences, probably anthropogenic in origin, are responsible. Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.

Collaboration


Dive into the Céline Bonfils's collaboration.

Top Co-Authors

Avatar

Benjamin D. Santer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Pierce

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Philip B. Duffy

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Bala

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Dettinger

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew W. Wood

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge