Celine Bourdon
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Celine Bourdon.
Environmental Health Perspectives | 2014
Ken W.K. Lee; Rebecca C Richmond; Pingzhao Hu; Leon French; Jean Shin; Celine Bourdon; Eva Reischl; Melanie Waldenberger; Sonja Zeilinger; Tom R. Gaunt; Wendy L. McArdle; Susan M. Ring; Geoff Woodward; Luigi Bouchard; Daniel Gaudet; George Davey Smith; Caroline L Relton; Tomáš Paus; Zdenka Pausova
Background: Prenatal exposure to maternal cigarette smoking (prenatal smoke exposure) had been associated with altered DNA methylation (DNAm) at birth. Objective: We examined whether such alterations are present from birth through adolescence. Methods: We used the Infinium HumanMethylation450K BeadChip to search across 473,395 CpGs for differential DNAm associated with prenatal smoke exposure during adolescence in a discovery cohort (n = 132) and at birth, during childhood, and during adolescence in a replication cohort (n = 447). Results: In the discovery cohort, we found five CpGs in MYO1G (top-ranking CpG: cg12803068, p = 3.3 × 10–11) and CNTNAP2 (cg25949550, p = 4.0 × 10–9) to be differentially methylated between exposed and nonexposed individuals during adolescence. The CpGs in MYO1G and CNTNAP2 were associated, respectively, with higher and lower DNAm in exposed versus nonexposed adolescents. The same CpGs were differentially methylated at birth, during childhood, and during adolescence in the replication cohort. In both cohorts and at all developmental time points, the differential DNAm was in the same direction and of a similar magnitude, and was not altered appreciably by adjustment for current smoking by the participants or their parents. In addition, four of the five EWAS (epigenome-wide association study)–significant CpGs in the adolescent discovery cohort were also among the top sites of differential methylation in a previous birth cohort, and differential methylation of CpGs in CYP1A1, AHRR, and GFI1 observed in that study was also evident in our discovery cohort. Conclusions: Our findings suggest that modifications of DNAm associated with prenatal maternal smoking may persist in exposed offspring for many years—at least until adolescence. Citation: Lee KW, Richmond R, Hu P, French L, Shin J, Bourdon C, Reischl E, Waldenberger M, Zeilinger S, Gaunt T, McArdle W, Ring S, Woodward G, Bouchard L, Gaudet D, Davey Smith G, Relton C, Paus T, Pausova Z. 2015. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect 123:193–199; http://dx.doi.org/10.1289/ehp.1408614
Molecular metabolism | 2014
Jennifer Taher; Christopher L. Baker; Carmelle Cuizon; Hassan Masoudpour; Rianna Zhang; Sarah Farr; Mark Naples; Celine Bourdon; Zdenka Pausova; Khosrow Adeli
Background/objectives Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL production is a key determinant of circulating lipid levels, we investigated the role of both peripheral and central GLP-1 receptor (GLP-1R) agonism in regulation of VLDL production. Methods The fructose-fed Syrian golden hamster was employed as a model of diet-induced insulin resistance and VLDL overproduction. Hamsters were treated with the GLP-1R agonist exendin-4 by intraperitoneal (ip) injection for peripheral studies or by intracerebroventricular (ICV) administration into the 3rd ventricle for central studies. Peripheral studies were repeated in vagotomised hamsters. Results Short term (7–10 day) peripheral exendin-4 enhanced satiety and also prevented fructose-induced fasting dyslipidemia and hyperinsulinemia. These changes were accompanied by decreased fasting plasma glucose levels, reduced hepatic lipid content and decreased levels of VLDL-TG and -apoB100 in plasma. The observed changes in fasting dyslipidemia could be partially explained by reduced respiratory exchange ratio (RER) thereby indicating a switch in energy utilization from carbohydrate to lipid. Additionally, exendin-4 reduced mRNA markers associated with hepatic de novo lipogenesis and inflammation. Despite these observations, GLP-1R activity could not be detected in primary hamster hepatocytes, thus leading to the investigation of a potential brain–liver axis functioning to regulate lipid metabolism. Short term (4 day) central administration of exendin-4 decreased body weight and food consumption and further prevented fructose-induced hypertriglyceridemia. Additionally, the peripheral lipid-lowering effects of exendin-4 were negated in vagotomised hamsters implicating the involvement of parasympathetic signaling. Conclusion Exendin-4 prevents fructose-induced dyslipidemia and hepatic VLDL overproduction in insulin resistance through an indirect mechanism involving altered energy utilization, decreased hepatic lipid synthesis and also requires an intact parasympathetic signaling pathway.
The American Journal of Clinical Nutrition | 2016
Suzanna Attia; Christian J. Versloot; Wieger P. Voskuijl; Sara J. van Vliet; Valeria Di Giovanni; Ling Zhang; Susan Richardson; Celine Bourdon; Mihai G. Netea; James A. Berkley; Patrick F. van Rheenen; Robert H.J. Bandsma
Background: Diarrhea affects a large proportion of children with severe acute malnutrition (SAM). However, its etiology and clinical consequences remain unclear. Objective: We investigated diarrhea, enteropathogens, and systemic and intestinal inflammation for their interrelation and their associations with mortality in children with SAM. Design: Intestinal pathogens (n = 15), cytokines (n = 29), fecal calprotectin, and the short-chain fatty acids (SCFAs) butyrate and propionate were determined in children aged 6–59 mo (n = 79) hospitalized in Malawi for complicated SAM. The relation between variables, diarrhea, and death was assessed with partial least squares (PLS) path modeling. Results: Fatal subjects (n = 14; 18%) were younger (mean ± SD age: 17 ± 11 compared with 25 ± 11 mo; P = 0.01) with higher prevalence of diarrhea (46% compared with 18%, P = 0.03). Intestinal pathogens Shigella (36%), Giardia (33%), and Campylobacter (30%) predominated, but their presence was not associated with death or diarrhea. Calprotectin was significantly higher in children who died [median (IQR): 1360 mg/kg feces (2443–535 mg/kg feces) compared with 698 mg/kg feces (1438–244 mg/kg feces), P = 0.03]. Butyrate [median (IQR): 31 ng/mL (112–22 ng/mL) compared with 2036 ng/mL (5800–149 ng/mL), P = 0.02] and propionate [median (IQR): 167 ng/mL (831–131 ng/mL) compared with 3174 ng/mL (5819–357 ng/mL), P = 0.04] were lower in those who died. Mortality was directly related to high systemic inflammation (path coefficient = 0.49), whereas diarrhea, high calprotectin, and low SCFA production related to death indirectly via their more direct association with systemic inflammation. Conclusions: Diarrhea, high intestinal inflammation, low concentrations of fecal SCFAs, and high systemic inflammation are significantly related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens. These findings offer an important understanding of inflammatory changes in SAM, which may lead to improved therapies. This trial was registered at www.controlled-trials.com as ISRCTN13916953.
Toxicology Letters | 2012
Maria Toledo-Rodriguez; Naomi Loyse; Celine Bourdon; Sara Arab; Zdenka Pausova
Prenatal exposure to maternal cigarette smoking in humans or nicotine in experimental animals is associated with elevated blood pressure in the offspring. This effect may be limited to genetically vulnerable individuals and related to alterations in the kidneys. Here we investigated whether prenatal exposure to nicotine (PEN) alters kidney morphology and gene expression, and whether these effects differ between two genetically distant strains, i.e. spontaneously hypertensive (SHR) and Brown Norway (BN) rats. The results showed that, in SHR but not in BN offspring, PEN decreases kidney glomerular mass and increases renal expression of the angiotensin II type 1b receptor gene; the latter is not mediated through changes in DNA methylation of the proximal promoter of this gene. The results also showed that PEN alters expression of multiple genes involved in the kidney nervous system function, with mostly opposite effects being seen in SHR and BN. These results suggest that, in genetically vulnerable individuals, PEN leads to morphological and molecular changes in the kidneys that may contribute to fetal programming of hypertension.
Journal of Nutrition | 2016
Valeria Di Giovanni; Celine Bourdon; Dominic X. Wang; Swapna Seshadri; Edward Senga; Christian J. Versloot; Wieger Voskuijl; Richard D. Semba; Indi Trehan; Ruin Moaddel; M Isabel Ordiz; Ling Zhang; John Parkinson; Mark J. Manary; Robert H.J. Bandsma
Background: Mortality in children with severe acute malnutrition (SAM) remains high despite standardized rehabilitation protocols. Two forms of SAM are classically distinguished: kwashiorkor and marasmus. Children with kwashiorkor have nutritional edema and metabolic disturbances, including hypoalbuminemia and hepatic steatosis, whereas marasmus is characterized by severe wasting. The metabolic changes underlying these phenotypes have been poorly characterized, and whether homeostasis is achieved during hospital stay is unclear. Objectives: We aimed to characterize metabolic differences between children with marasmus and kwashiorkor at hospital admission and after clinical stabilization and to compare them with stunted and nonstunted community controls. Methods: We studied children aged 9–59 mo from Malawi who were hospitalized with SAM (n = 40; 21 with kwashiorkor and 19 with marasmus) or living in the community (n = 157; 78 stunted and 79 nonstunted). Serum from patients with SAM was obtained at hospital admission and 3 d after nutritional stabilization and from community controls. With the use of targeted metabolomics, 141 metabolites, including amino acids, biogenic amines, acylcarnitines, sphingomyelins, and phosphatidylcholines, were measured. Results: At admission, most metabolites (128 of 141; 91%) were lower in children with kwashiorkor than in those with marasmus, with significant differences in several amino acids and biogenic amines, including those of the kynurenine-tryptophan pathway. Several phosphatidylcholines and some acylcarnitines also differed. Patients with SAM had profiles that were profoundly different from those of stunted and nonstunted controls, even after clinical stabilization. Amino acids and biogenic amines generally improved with nutritional rehabilitation, but most sphingomyelins and phosphatidylcholines did not. Conclusions: Children with kwashiorkor were metabolically distinct from those with marasmus, and were more prone to severe metabolic disruptions. Children with SAM showed metabolic profiles that were profoundly different from stunted and nonstunted controls, even after clinical stabilization. Therefore, metabolic recovery in children with SAM likely extends beyond discharge, which may explain the poor long-term outcomes in these children. This trial was registered at isrctn.org as ISRCTN13916953.
PLOS ONE | 2016
Ling Zhang; Wieger Voskuijl; Marialena Mouzaki; Albert K. Groen; Jennifer Alexander; Celine Bourdon; Alice Wang; Christian J. Versloot; Valeria Di Giovanni; Robert H.J. Bandsma
Objective Severe acute malnutrition (SAM) is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis. Design An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6–60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4) and FGF-19 were quantified. Results On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR) of 24.6 μmol/L [8.6–47.7] compared to 1.9 μmol/L [1.7–3.3] (p = 0.01) in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19), a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower. Conclusion SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the development of liver disease.
Physiological Genomics | 2009
Celine Bourdon; Silvie Hojna; Melissa Jordan; Julie Bérubé; Vladimír Křen; Michal Pravenec; Peter Liu; Sara Arab; Zdenka Pausova
Obesity is a leading cause of diabetes mellitus and hypertension. Molecular signals produced by adipose tissue may contribute to the pathogenesis of these two disorders. We showed previously that a specific segment of rat chromosome 20 (RNO20) contains a gene(s) regulating the degree of obesity, glucose intolerance, and hypertension in response to a chronic high-fat diet (HFD). Here we examined microarray gene expression profiles and cellular morphology of adipose tissues and whole body energy expenditure in this model. Adult male spontaneously hypertensive rats (SHR) and a congenic strain (SHR.1N) that differs from SHR by the above-mentioned segment of RNO20 were fed for 12 wk with HFD or a normal diet. At the end of this period, whole body energy expenditure was measured with indirect calorimetry. In response to HFD, body weight, fat pad weights, adipocyte size, and serum leptin levels increased significantly more in SHR.1N than SHR. Microarray gene expression profiles [Affymetrix, 15,923 genes and expressed sequence tags (ESTs)] showed that multiple genes of molecular pathways involved in lipogenesis were downregulated to a similar level in both strains, whereas genes involved in fatty acid oxidation and energy dissipation were upregulated less in SHR.1N than SHR. This was associated with lower whole body energy expenditure in SHR.1N than SHR at the end of the 12-wk HFD. Our results suggest that a gene(s) within the RNO20 segment regulate(s) HFD-induced increases in adiposity, and that this effect may be mediated, at least in part, by the impact of that gene(s) on fat burning and energy expenditure.
The Journal of Pediatrics | 2017
Rosalie H. Bartels; Celine Bourdon; Isabel Potani; Brian Mhango; Deborah A. van den Brink; John S. Mponda; Anneke C. Muller Kobold; Robert H.J. Bandsma; Michael Boele van Hensbroek; Wieger Voskuijl
Objective To assess the benefits of pancreatic enzyme replacement therapy (PERT) in children with complicated severe acute malnutrition. Study design We conducted a randomized, controlled trial in 90 children aged 6‐60 months with complicated severe acute malnutrition at the Queen Elizabeth Central Hospital in Malawi. All children received standard care; the intervention group also received PERT for 28 days. Results Children treated with PERT for 28 days did not gain more weight than controls (13.7 ± 9.0% in controls vs 15.3 ± 11.3% in PERT; P = .56). Exocrine pancreatic insufficiency was present in 83.1% of patients on admission and fecal elastase‐1 levels increased during hospitalization mostly seen in children with nonedematous severe acute malnutrition (P < .01). Although the study was not powered to detect differences in mortality, mortality was significantly lower in the intervention group treated with pancreatic enzymes (18.6% vs 37.8%; P < .05). Children who died had low fecal fatty acid split ratios at admission. Exocrine pancreatic insufficiency was not improved by PERT, but children receiving PERT were more likely to be discharged with every passing day (P = .02) compared with controls. Conclusions PERT does not improve weight gain in severely malnourished children but does increase the rate of hospital discharge. Mortality was lower in patients on PERT, a finding that needs to be investigated in a larger cohort with stratification for edematous and nonedematous malnutrition. Mortality in severe acute malnutrition is associated with markers of poor digestive function. Trial registration ISRCTN.com: 57423639.
PLOS ONE | 2018
Prasad S. Dalvi; Steven Yang; Nathan Swain; Junsoo Kim; Senjuti Saha; Celine Bourdon; Ling Zhang; Rose Chami; Robert H.J. Bandsma
Early postnatal-life malnutrition remains prevalent globally, and about 45% of all child deaths are linked to malnutrition. It is not clear whether survivors of childhood malnutrition suffer from long-term metabolic effects, especially when they are later in life exposed to a fat and carbohydrate rich obesogenic diet. The lack of knowledge around this dietary “double burden” warrants studies to understand the long-term consequences of children previously exposed to malnutrition. We hypothesized that an early-life nutritional insult of low protein consumption in mice would lead to long-term metabolic disturbances that would exacerbate the development of diet-induced insulin resistance and non-alcoholic fatty liver disease (NAFLD). We investigated the effects of feeding a low protein diet (4% wt/wt) immediately after weaning for four weeks and subsequent feeding of a high carbohydrate high fat feeding for 16 weeks on metabolic function and development of NAFLD. Mice exposed to early-life protein restriction demonstrated a transient glucose intolerance upon recovery by regular chow diet feeding. However, protein restriction after weaning in mice did not exacerbate an obesogenic diet-induced insulin resistance or progression to NAFLD. These data suggest that transient protein restriction in early-life does not exacerbate an obesogenic diet-induced NAFLD and insulin resistance.
Trials | 2017
Allison I. Daniel; Meta van den Heuvel; Wieger Voskuijl; Melissa Gladstone; Mike Bwanali; Isabel Potani; Celine Bourdon; Jenala Njirammadzi; Robert H.J. Bandsma
BackgroundSevere acute malnutrition (SAM) is associated with high mortality rates and impairments in growth and development in children that do survive. There are complex nutritional, health, and behavioural risk factors involving severely malnourished children and their primary caregivers, requiring integrated intervention approaches.MethodsA cluster-randomized controlled trial at the Queen Elizabeth Central Hospital in Blantyre, Malawi will be conducted to evaluate the effectiveness of a 4-day hospital-based intervention programme directed at primary caregivers. This programme, titled the Kusamala Program, aims to improve developmental and nutritional outcomes in children with SAM. Up to six primary caregivers and their children will be enrolled to groups each week, which will be randomly allocated to intervention or comparison arms. The intervention package consists of interactive counselling on three modules: 1) nutrition and feeding; 2) water, sanitation, and hygiene (WASH); and 3) psychosocial stimulation. Data collection will be performed at enrolment, at discharge from hospital, and at 6 months following discharge. The primary outcome is child development assessed with the Malawi Developmental Assessment Tool (MDAT), a validated measure of gross and fine motor, language, and social development.DiscussionThis intervention programme is unique because it utilizes primary caregivers’ time spent in-hospital while children receive treatment for SAM. The programme has the potential to be effective in addressing multiple aspects of child, nutrition and development.Trial registrationClinicalTrials.gov, NCT03072433. Registered on 7 March 2017.