Céline Helsmoortel
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Céline Helsmoortel.
Nature Genetics | 2014
Céline Helsmoortel; Anneke T. Vulto-van Silfhout; Bradley P. Coe; Geert Vandeweyer; Liesbeth Rooms; Jenneke van den Ende; Janneke H M Schuurs-Hoeijmakers; Carlo Marcelis; Marjolein H. Willemsen; Lisenka E.L.M. Vissers; Helger G. Yntema; Madhura Bakshi; Meredith Wilson; Kali Witherspoon; Helena Malmgren; Ann Nordgren; Göran Annerén; Marco Fichera; Paolo Bosco; Corrado Romano; Bert B.A. de Vries; Tjitske Kleefstra; R. Frank Kooy; Evan E. Eichler; Nathalie Van der Aa
Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities, a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile-X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next-generation sequencing, for the large majority of cases no molecular diagnosis can be established. Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD-associated genes known to date.
Human Molecular Genetics | 2013
Zafar Iqbal; Geert Vandeweyer; Monique van der Voet; Ali Muhammad Waryah; Muhammad Yasir Zahoor; Judith Besseling; Laura Tomas Roca; Anneke T. Vulto-van Silfhout; Bonnie Nijhof; Jamie M. Kramer; Nathalie Van der Aa; Muhammad Ansar; Hilde Peeters; Céline Helsmoortel; Christian Gilissen; Lisenka E.L.M. Vissers; Joris A. Veltman; Arjan P.M. de Brouwer; R. Frank Kooy; Sheikh Riazuddin; Annette Schenck; Hans van Bokhoven; Liesbeth Rooms
AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative nature of these mutations remained controversial. Here, we report inactivating mutations in the Ankyrin 3 (ANK3) gene in patients with severe cognitive deficits. In a patient with a borderline intelligence, severe attention deficit hyperactivity disorder (ADHD), autism and sleeping problems, all isoforms of the ANK3 gene, were disrupted by a balanced translocation. Furthermore, in a consanguineous family with moderate intellectual disability (ID), an ADHD-like phenotype and behavioral problems, we identified a homozygous truncating frameshift mutation in the longest isoform of the same gene, which represents the first reported familial mutation in the ANK3 gene. The causality of ANK3 mutations in the two families and the role of the gene in cognitive function were supported by memory defects in a Drosophila knockdown model. Thus we demonstrated that ANK3 plays a role in intellectual functioning. In addition, our findings support the suggested association of ANK3 with various neuropsychiatric disorders and illustrate the genetic and molecular relation between a wide range of neurodevelopmental disorders.
Nature Genetics | 2017
Holly A.F. Stessman; Bo Xiong; Bradley P. Coe; Tianyun Wang; Kendra Hoekzema; Michaela Fenckova; Malin Kvarnung; Jennifer Gerdts; Sandy Trinh; Nele Cosemans; Laura Vives; Janice Lin; Tychele N. Turner; Gijs W.E. Santen; Claudia Ruivenkamp; Marjolein Kriek; Arie van Haeringen; Emmelien Aten; Kathryn Friend; Jan Liebelt; Christopher Barnett; Eric Haan; Marie Shaw; Jozef Gecz; Britt Marie Anderlid; Ann Nordgren; Anna Lindstrand; Charles E. Schwartz; R. Frank Kooy; Geert Vandeweyer
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
American Journal of Human Genetics | 2015
Lot Snijders Blok; Erik Madsen; Jane Juusola; Christian Gilissen; Diana Baralle; Margot R.F. Reijnders; Hanka Venselaar; Céline Helsmoortel; Megan T. Cho; Alexander Hoischen; Lisenka E.L.M. Vissers; Tom S. Koemans; Willemijn Wissink-Lindhout; Evan E. Eichler; Corrado Romano; Hilde Van Esch; Connie Stumpel; Maaike Vreeburg; Eric Smeets; Karin Oberndorff; Bregje W.M. van Bon; Marie Shaw; Jozef Gecz; Eric Haan; Melanie Bienek; Corinna Jensen; Bart Loeys; Anke Van Dijck; A. Micheil Innes; Hilary Racher
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2014
Geert Vandeweyer; Céline Helsmoortel; Anke Van Dijck; Anneke T. Vulto-van Silfhout; Bradley P. Coe; Raphael Bernier; Jennifer Gerdts; Liesbeth Rooms; Jenneke van den Ende; Madhura Bakshi; Meredith Wilson; Ann Nordgren; Laura G. Hendon; Omar A. Abdul-Rahman; Corrado Romano; Bert B.A. de Vries; Tjitske Kleefstra; Evan E. Eichler; Nathalie Van der Aa; R. Frank Kooy
Mutations in ADNP were recently identified as a frequent cause of syndromic autism, characterized by deficits in social communication and interaction and restricted, repetitive behavioral patterns. Based on its functional domains, ADNP is a presumed transcription factor. The gene interacts closely with the SWI/SNF complex by direct and experimentally verified binding of its C‐terminus to three of its core components. A detailed and systematic clinical assessment of the symptoms observed in our patients allows a detailed comparison with the symptoms observed in other SWI/SNF disorders. While the mutational mechanism of the first 10 patients identified suggested a gain of function mechanism, an 11th patient reported here is predicted haploinsufficient. The latter observation may raise hope for therapy, as addition of NAP, a neuroprotective octapeptide named after the first three amino acids of the sequence NAPVSPIQ, has been reported by others to ameliorate some of the cognitive abnormalities observed in a knockout mouse model. It is concluded that detailed clinical and molecular studies on larger cohorts of patients are necessary to establish a better insight in the genotype phenotype correlation and in the mutational mechanism.
Clinical Genetics | 2015
Céline Helsmoortel; Geert Vandeweyer; Phillip Ordoukhanian; F. Van Nieuwerburgh; N. Van der Aa; R.F. Kooy
Intellectual disability (ID), characterized by an intellectual performance of at least 2 SD (standard deviations) below average is a frequent, lifelong disorder with a prevalence of 2–3%. Today, only for at most half of patients a diagnosis is made. Knowing the cause of the ID is important for patients and their relatives, as it allows for appropriate medical care, prognosis on further development of the disorder, familial counselling or access to support groups. Whole‐exome sequencing (WES) now offers the possibility to identify the genetic cause for patients for which all previously available genetic tests, including karyotyping, specific gene analysis, or microarray analysis did not reveal causative abnormalities. However, data analysis of WES experiments is challenging. Here we present an analysis workflow implementable in any laboratory, requiring no bioinformatics knowledge. We demonstrated its feasibility on a cohort of 10 patients, in which we found a conclusive diagnosis in 3 and a likely diagnosis in 2 more patients. Of the three conclusive diagnoses, one was a clinically suspected mutation missed by Sanger sequencing, and one was an atypical presentation of a known monogenic disorder, highlighting two essential strengths of WES‐based diagnostics.
American Journal of Medical Genetics | 2016
Céline Helsmoortel; Sigrid Swagemakers; Geert Vandeweyer; Andrew Stubbs; Ivo Palli; Geert Mortier; R. Frank Kooy; Peter J. van der Spek
Whole genome sequencing of a severely affected dizygotic twin with an autism spectrum disorder and intellectual disability revealed a compound heterozygous mutation in the HTR7 gene as the only variation not detected in control databases. Each parent carries one allele of the mutation, which is not present in an unaffected stepsister. The HTR7 gene encodes the 5‐HT7 serotonin receptor that is involved in brain development, synaptic transmission, and plasticity. The paternally inherited p.W60C variant is situated at an evolutionary conserved nucleotide and predicted damaging by Polyphen2. A mutation akin to the maternally inherited pV286I mutation has been reported to significantly affect the binding characteristics of the receptor. Therefore, the observed sequence alterations provide a first suggestive link between a genetic abnormality in the HTR7 gene and a neurodevelopmental disorder.
Gene | 2017
I.M. van der Werf; A. Van Dijck; Edwin Reyniers; Céline Helsmoortel; A.A. Kumar; Vera M. Kalscheuer; A.P.M. de Brouwer; Tjitske Kleefstra; H. van Bokhoven; Geert Mortier; S. Janssens; Geert Vandeweyer; R.F. Kooy
Intellectual disability (ID) affects approximately 1-2% of the general population and is characterized by impaired cognitive abilities. ID is both clinically as well as genetically heterogeneous, up to 2000 genes are estimated to be involved in the emergence of the disease with various clinical presentations. For many genes, only a few patients have been reported and causality of some genes has been questioned upon the discovery of apparent loss-of-function mutations in healthy controls. Description of additional patients strengthens the evidence for the involvement of a gene in the disease and can clarify the clinical phenotype associated with mutations in a particular gene. Here, we present two large four-generation families with a total of 11 males affected with ID caused by mutations in ZNF711, thereby expanding the total number of families with ID and a ZNF711 mutation to four. Patients with mutations in ZNF711 all present with mild to moderate ID and poor speech accompanied by additional features in some patients, including autistic features and mild facial dysmorphisms, suggesting that ZNF711 mutations cause non-syndromic ID.
F1000 Medicine Reports | 2012
Céline Helsmoortel; Geert Vandeweyer; R. Frank Kooy
Over the last decade, the detection of chromosomal abnormalities has shifted from conventional karyotyping under a light microscope to molecular detection using microarrays. The latter technology identified copy number variation as a major source of variation in the human genome; moreover, copy number variants were found responsible for 10-20% of cases of intellectual disability. Recent technological advances in microarray technology have also enabled the detection of very small local chromosomal rearrangements, sometimes affecting the function of only a single gene. Here, we illustrate how high resolution microarray analysis has led to increased insights into the contribution of specific genes in disease.
The Journal of Molecular Diagnostics | 2016
Céline Helsmoortel; R. Frank Kooy; Geert Vandeweyer
Modern experimental procedures in molecular genetics, such as next-generation sequencing experiments, require that samples are taken along a whole series of wet- and dry-laboratory steps. It generally is accepted that by increasing the complexity and number of steps in the experimental pipeline, the risk of sample swaps increases. It therefore is recommended to confirm the identity of each individual sample at the end of any pipeline. Here, we present a versatile assay to determine the identity of samples rapidly and efficiently by genotyping 21 single-nucleotide polymorphisms (SNPs) using multiplex high resolution melting. The selected SNPs also are present in whole-exome sequencing data, and comparison of the differentially obtained genotypes allows reliable identification of individual samples. In this assay, we combined primers interrogating two to three SNPs per high resolution melting reaction, enabling the generation of the SNP genotype profile in only eight reactions per sample, limiting the hands-on time and minimizing the amount of reagents. This SNP profiling approach also can be used to track samples in custom next-generation sequencing enrichment panels by including these 21 SNPs in the target region, allowing for the often-required independent validation of sample identity in both clinical and research settings.