Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celine I.L. Justino is active.

Publication


Featured researches published by Celine I.L. Justino.


Ecotoxicology | 2012

Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view

Celine I.L. Justino; Ruth Pereira; Ana C. Freitas; Teresa A.P. Rocha-Santos; Teresa S. L. Panteleitchouk; Armando C. Duarte

The olive oil mill wastewater (OMW) is a problematic and polluting effluent which may degrade the soil and water quality, with critical negative impacts on ecosystems functions and services provided. The main purpose of this review paper is presenting the state of the art of OMW treatments focusing on their efficiency to reduce OMW toxicity, and emphasizing the role of ecotoxicological tests on the evaluation of such efficiency before the up-scale of treatment methodologies being considered. In the majority of research works, the reduction of OMW toxicity is related to the degradation of phenolic compounds (considered as the main responsible for the toxic effects of OMW on seed germination, on bacteria, and on different species of soil and aquatic invertebrates) or the decrease of chemical oxygen demand content, which is not scientifically sound. Batteries of ecotoxicological tests are not applied before and after OMW treatments as they should be, thus leading to knowledge gaps in terms of accurate and real assessment of OMW toxicity. Although the toxicity of OMW is usually high, the evaluation of effects on sub-lethal endpoints, on individual and multispecies test systems, are currently lacking, and the real impacts yielded by its dilution, in freshwater trophic chains of receiving systems can not be assessed. As far as the terrestrial compartment is considered, ecotoxicological data available include tests only with plants and the evaluation of soil microbial parameters, reflecting concerns with the impacts on crops when using OMW for irrigation purposes. The evaluation of its ecotoxicity to other edaphic species were not performed giving rise to a completely lack of knowledge about the consequences of such practice on other soil functions. OMW production is a great environmental problem in Mediterranean countries; hence, engineers, chemists and ecotoxicologists should face this problem together to find an ecologically friend solution.


Trends in Analytical Chemistry | 2013

Strategies for enhancing the analytical performance of nanomaterial-based sensors

Celine I.L. Justino; Teresa A.P. Rocha-Santos; S. Cardoso; Armando C. Duarte

Abstract We provide a state-of-the-art review of the main strategies for the enhancement of analytical performance of sensors using nanomaterials, particularly nanowires and carbon-based materials. We emphasize the way to overcome the problem of device-to-device variation. We discuss the study of the influence of nanomaterial characteristics, sensor dimensions and operational conditions on sensing performance, and the application of appropriate calibration models.


Journal of Hazardous Materials | 2009

Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation.

Celine I.L. Justino; Kátia Duarte; Filipe Loureiro; Ruth Pereira; Sara C. Antunes; Sérgio Marques; Fernando Gonçalves; Teresa A.P. Rocha-Santos; Ana C. Freitas

Olive oil mill wastewater (OOMW) is responsible for serious environmental problems. In this study, the efficiency of two treatments involving fungi and photo-Fenton oxidation, sequentially applied to OOMW was analyzed for organic compounds degradation and toxicity mitigation. The treatment with fungi (especially Pleurotus sajor caju) of diluted OOMW samples promoted a reduction of their acute toxicity to Daphnia longispina. Although this fungi species have not induced significant color reduction it was responsible for 72,91 and 77% reductions in chemical oxygen demand (COD), total phenolic and organic compound contents. After biological treatment, photo-Fenton oxidation seemed to be an interesting solution, especially for color reduction. However, the OOMWs remained highly toxic after photo-Fenton oxidation. Considering the second sequence of treatments, namely photo-Fenton oxidation followed by biological treatment, the former revealed, once more, a great potential because it can be applied to non-diluted OOMW, with significant reductions in COD (53-76%), total phenolic content (81-92%) and organic compounds content (100%). Despite fungal species still have demonstrated a high capacity for bioaccumulation of organic compounds, resulting from photo-Fenton oxidation, the biological treatment did not cause substantial benefits in terms of COD, total phenolic content and toxicity reduction.


Environmental Science and Pollution Research | 2010

Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation.

Celine I.L. Justino; Ana P. G. C. Marques; Kátia Duarte; Armando C. Duarte; Ruth Pereira; Teresa A.P. Rocha-Santos; Ana C. Freitas

Background, aim, and scopeOlive oil mill wastewater (OOMW) environmental impacts minimization have been attempted by developing more effective processes, but no chemical or biological treatments were found to be totally effective to mitigate their impact on receiving systems. This work is the first that reports simultaneously the efficiency of three different approaches: biological treatment by two fungal species (Trametes versicolor or Pleurotus sajor caju), enzymatic treatment by laccase, and chemical treatment by photo-Fenton oxidation on phenols removal.Materials and methodsThose treatments were performed on OOMW with or without phenol supplement (p-coumaric, vanillin, guaiacol, vanillic acid, or tyrosol). OOMW samples resulted from treatments were extracted for phenols using liquid–liquid extraction and analyzed by gas chromatography coupled to mass spectrometry.ResultsTreatment with T. versicolor or P. sajor caju were able to remove between 22% and 74% and between 8% and 76% of phenols, respectively. Treatment by laccase was able to reduce 4% to 70% of phenols whereas treatment by photo-Fenton oxidation was responsible for 100% phenols reduction.DiscussionRange of phenol degradation was equivalent between T. versicolor, P. sajor caju and laccase for p-coumaric, guaiacol, caffeic acid, and tyrosol in supplemented OOMW, which enhances this enzyme role in the biological treatment promoted by these two species.ConclusionsPhenols were removed more efficiently by photo-Fenton treatment than by biological or enzymatic treatments.Recommendations and perspectivesUse of fungi, laccase, or photo-Fenton presents great potential for removing phenols from OOMW. This should be further assessed by increasing the application scale and the reactor configurations effect on the performance, besides a toxicity evaluation of treated wastewater in comparison to raw wastewater.


Talanta | 2016

Label-free disposable immunosensor for detection of atrazine

Najet Belkhamssa; Celine I.L. Justino; Patrícia S.M. Santos; S. Cardoso; Isabel Lopes; Armando C. Duarte; Teresa A.P. Rocha-Santos; Mohamed Ksibi

This work reports the construction of a fast, disposable, and label-free immunosensor for the determination of atrazine. The immunosensor is based on a field effect transistor (FET) where a network of single-walled carbon nanotubes (SWCNTs) acts as the conductor channel, constituting carbon nanotubes field effect transistors (CNTFETs). Anti-atrazine antibodies were adsorbed onto the SWCNTs and subsequently the SWCNTs were protected with Tween 20 to prevent the non-specific binding of bacteria or proteins. The principle of the immunoreaction consists in the direct adsorption of atrazine specific antibodies (anti-atrazine) to SWCNTs networks. After exposed to increasing concentrations of atrazine, the CNTFETs could be used as useful label-free platforms to detect atrazine. Under the optimal conditions, a limit of detection as low as 0.001 ng mL(-1) was obtained, which is lower than that of other methods for the atrazine detection, and in a working range between 0.001 and 10 ng mL(-1). The average recoveries obtained for real water samples spiked with atrazine varied from 87.3% to 108.0%. The results show that the constructed sensors display a high sensitivity and could be useful tools for detecting pesticides like atrazine at low concentrations. They could be also applied to the determination of atrazine in environmental aqueous samples, such as seawater and riverine water.


Trends in Analytical Chemistry | 2016

Critical overview on the application of sensors and biosensors for clinical analysis

Celine I.L. Justino; Armando C. Duarte; Teresa A.P. Rocha-Santos

Abstract Sensors and biosensors have been increasingly used for clinical analysis due to their miniaturization and portability, allowing the construction of diagnostic devices for point-of-care testing. This paper presents an up-to-date overview and comparison of the analytical performance of sensors and biosensors recently used in clinical analysis. This includes cancer and cardiac biomarkers, hormones, biomolecules, neurotransmitters, bacteria, virus and cancer cells, along with related significant advances since 2011. Some methods of enhancing the analytical performance of sensors and biosensors through their figures of merit are also discussed.


Talanta | 2013

Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors.

Celine I.L. Justino; Ana C. Freitas; José Amaral; Teresa A.P. Rocha-Santos; S. Cardoso; Armando C. Duarte

Label-free immunosensors based on single-walled carbon nanotubes field effect transistor (NTFET) devices were developed for the detection of C-reactive protein (CRP) which is currently the best validated inflammatory biomarker associated with cardiovascular diseases. The immunoreaction principle consists in the direct adsorption of CRP specific antibodies (anti-CRP) to single-walled carbon nanotubes (SWCNTs) networks. Such anti-CRP are the molecular receptors of CRP antigens which, in turn, can be detected by the developed NTFET devices in a linear dynamic range of 10(-4)-10(2) μg/mL. Thus, typical values of CRP (in blood serum) for healthy persons (<1 μg/mL), and higher levels (>5 μg/mL) corresponding to pathological states, can be both detected with the NTFET immunosensors, becoming an advantageous alternative as the basis for the development of analytical instrumentation for assessment of risk of occurrence of cardiovascular diseases. A log-log linear regression was applied to the experimental data with a correlation coefficient of r=0.9962 (p<0.001), and there is no statistical difference (from ANOVA) between individual NTFET devices (p=0.9582), demonstrating acceptable reproducibility. According to the experimental results, the estimate of detection limit (LOD, 10(-4)μg/mL) is 3-fold lower than that of some conventional immunoassay techniques for blood serum (e.g., LOD of 0.2 μg/mL for high-sensitivity enzyme-linked immunosorbent assay), and the dynamic range (10(-4)-10(2)μg/mL) is about 6-fold higher. Furthermore, this simple and low-cost methodology allows the use of sample volumes as low as 1 μL for the label-free detection of CRP.


Bioanalysis | 2014

Assessment of cardiovascular disease risk using immunosensors for determination of C-reactive protein levels in serum and saliva: a pilot study

Celine I.L. Justino; Kátia Duarte; Susana Lucas; Paulo Chaves; Paulo Bettencourt; Ana C. Freitas; Ruth Pereira; S. Cardoso; Armando C. Duarte; Teresa A.P. Rocha-Santos

BACKGROUND Disposable immunosensors based on field effect transistors with single-walled carbon nanotubes (NTFET) were applied for the first time to clinical samples of undiluted blood serum and saliva for the determination of C-reactive protein (CRP), and validated by comparison with ELISA. RESULTS The NTFET showed comparable analytical performance with the ELISA when applied to clinical samples, which means that NTFET can be used as an alternative to ELISA. Also, a high correlation between the serum and salivary CRP levels was found with the NTFET, which means that saliva could be used based on a noninvasive sampling as an alternative fluid to blood serum. The establishment of a new range of CRP levels based on saliva was also found. CONCLUSION The monitoring of CRP in saliva samples by disposable immunosensors could be a valuable approach for the improvement of healthcare services, considering the worldwide increased incidence of cardiovascular diseases.


Sensors | 2017

Recent Progress in Biosensors for Environmental Monitoring: A Review

Celine I.L. Justino; Armando C. Duarte; Teresa A.P. Rocha-Santos

The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.


Biodegradation | 2011

Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: a comparative study.

Celine I.L. Justino; Ana Gabriela Marques; Dina Rodrigues; Lurdes I.B. Silva; Armando C. Duarte; Teresa A.P. Rocha-Santos; Ana C. Freitas

Pulp and paper mills generate pollutants associated to their effluents depending upon the type of process, type of the wood materials, process technology applied, management practices, internal recirculation of the effluent for recovery, the amount of water used in the industrial process and type of secondary treatment. This study is the first that reports a simultaneous evaluation of the effects of tertiary treatments by fungi (Rhizopus oryzae and Pleurotus sajor caju), by enzyme (laccase) and by an oxidation process (photo-Fenton) on individual phenols (vanillin, guaiacol, phloroglucinol, vanillic acid and syringic acid) of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (BKPME). The tertiary treatments were applied on BKPME samples and in BKPME samples supplemented with extra concentration of each phenol. Tertiary treatments by Rhizopus oryzae and photo-Fenton oxidation were able of complete removal (100%) of phenols on BKPME samples whereas P. sajor caju and laccase were able of 60–85% removal. On BKPME samples with added concentration of each phenol, photo-Fenton was the only treatment capable of total phenols removal (100%), which suggests a great potential for its application.

Collaboration


Dive into the Celine I.L. Justino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Cardoso

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge