Céline Le Bohec
University of Strasbourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Céline Le Bohec.
Nature | 2011
Claire Saraux; Céline Le Bohec; Joël M. Durant; Vincent A. Viblanc; Michel Gauthier-Clerc; David Beaune; Young-Hyang Park; Nigel G. Yoccoz; Nils Chr. Stenseth; Yvon Le Maho
In 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems. Yet most available information on penguin population dynamics is based on the controversial use of flipper banding. Although some reports have found the effects of flipper bands to be deleterious, some short-term (one-year) studies have concluded otherwise, resulting in the continuation of extensive banding schemes and the use of data sets thus collected to predict climate impact on natural populations. Here we show that banding of free-ranging king penguins (Aptenodytes patagonicus) impairs both survival and reproduction, ultimately affecting population growth rate. Over the course of a 10-year longitudinal study, banded birds produced 39% fewer chicks and had a survival rate 16% lower than non-banded birds, demonstrating a massive long-term impact of banding and thus refuting the assumption that birds will ultimately adapt to being banded. Indeed, banded birds still arrived later for breeding at the study site and had longer foraging trips even after 10 years. One of our major findings is that responses of flipper-banded penguins to climate variability (that is, changes in sea surface temperature and in the Southern Oscillation index) differ from those of non-banded birds. We show that only long-term investigations may allow an evaluation of the impact of flipper bands and that every major life-history trait can be affected, calling into question the banding schemes still going on. In addition, our understanding of the effects of climate change on marine ecosystems based on flipper-band data should be reconsidered.
Comptes Rendus Biologies | 2011
Yvon Le Maho; Claire Saraux; Joël M. Durant; Vincent A. Viblanc; Michel Gauthier-Clerc; Nigel G. Yoccoz; Nils Chr. Stenseth; Céline Le Bohec
Individual marking is essential to study the life-history traits of animals and to track them in all kinds of ecological, behavioural or physiological studies. Unlike other birds, penguins cannot be banded on their legs due to their leg joint anatomy and a band is instead fixed around a flipper. However, there is now detailed evidence that flipper-banding has a detrimental impact on individuals. It can severely injure flipper tissues, and the drag effect of their flipper bands results in a higher energy expenditure when birds are moving through the water. It also results in lower efficiency in foraging, since they require longer foraging trips, as well as in lower survival and lower breeding success. Moreover, due to the uncertainty of the rate of band loss, flipper bands induce a scientific bias. These problems, which obviously have serious ethical implications, can be avoided with alternative methods such as radiofrequency identification techniques.
PLOS ONE | 2014
André Ancel; Robin Cristofari; Peter T. Fretwell; Philip N. Trathan; Barbara Wienecke; Matthieu Boureau; Jennifer Morinay; Stéphane Blanc; Yvon Le Maho; Céline Le Bohec
Evaluating the demographic trends of marine top predators is critical to understanding the processes involved in the ongoing rapid changes in Antarctic ecosystems. However, the remoteness and logistical complexity of operating in Antarctica, especially during winter, make such an assessment difficult. Satellite imaging is increasingly recognised as a valuable method for remote animal population monitoring, yet its accuracy and reliability are still to be fully evaluated. We report here the first ground visit of an emperor penguin colony first discovered by satellite, but also the discovery of a second one not indicated by satellite survey at that time. Several successive remote surveys in this coastal region of East Antarctica, both before and after sudden local changes, had indeed only identified one colony. These two colonies (with a total of ca. 7,400 breeding pairs) are located near the Mertz Glacier in an area that underwent tremendous habitat change after the glacier tongue broke off in February 2010. Our findings therefore suggest that a satellite survey, although offering a major advance since it allows a global imaging of emperor penguin colonies, may miss certain colony locations when challenged by certain features of polar ecosystems, such as snow cover, evolving ice topology, and rapidly changing habitat. Moreover our survey shows that this large seabird has considerable potential for rapid adaptation to sudden habitat loss, as the colony detected in 2009 may have moved and settled on new breeding grounds. Overall, the ability of emperor penguin colonies to relocate following habitat modification underlines the continued need for a mix of remote sensing and field surveys (aerial photography and ground counts), especially in the less-frequented parts of Antarctica, to gain reliable knowledge about the population demography and dynamics of this flagship species of the Antarctic ecosystem.
Molecular Phylogenetics and Evolution | 2017
Juliana A. Vianna; Daly Noll; Gisele P. M. Dantas; Maria Virginia Petry; Andrés Barbosa; Daniel González-Acuña; Céline Le Bohec; Francesco Bonadonna; Elie Poulin
Two main hypotheses have been debated about the biogeography of the Southern Ocean: (1) the Antarctic Polar Front (APF), acting as a barrier between Antarctic and sub-Antarctic provinces, and (2) the Antarctic Circumpolar Current (ACC), promoting gene flow among sub-Antarctic areas. The Gentoo penguin is distributed throughout these two provinces, separated by the APF. We analyzed mtDNA (HVR1) and 12 microsatellite loci of 264 Gentoo penguins, Pygoscelis papua, from 12 colonies spanning from the Western Antarctic Peninsula and the South Shetland Islands (WAP) to the sub-Antarctic Islands (SAI). While low genetic structure was detected among WAP colonies (mtDNA ФST=0.037-0.133; microsatellite FST=0.009-0.063), high differentiation was found between all SAI and WAP populations (mtDNA ФST=0.678-0.930; microsatellite FST=0.110-0.290). These results suggest that contemporary dispersal around the Southern Ocean is very limited or absent. As predicted, the APF appears to be a significant biogeographical boundary for Gentoo penguin populations; however, the ACC does not promote connectivity in this species. Our data suggest demographic expansion in the WAP during the last glacial maximum (LGM, about 20kya), but stability in SAI. Phylogenetic analyses showed a deep divergence between populations from the WAP and those from the SAI. Therefore, taxonomy should be further revised. The Crozet Islands resulted as a basal clade (3.57Mya), followed by the Kerguelen Islands (2.32Mya) as well as a more recent divergence between the Falkland/Malvinas Islands and the WAP (1.27Mya). Historical isolation, local adaptation, and past climate scenarios of those Evolutionarily Significant Units may have led to different potentials to respond to climate changes.
PLOS ONE | 2015
Robin Cristofari; Emiliano Trucchi; Jason D. Whittington; Stéphanie Vigetta; Hélène Gachot-Neveu; Nils Christian Stenseth; Yvon Le Maho; Céline Le Bohec
How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of understanding intra-colonial dispersal and genetic mixing mechanisms in order to better estimate species-wide gene flows and population dynamics.
The Journal of Experimental Biology | 2017
Manfred R. Enstipp; Charles-André Bost; Céline Le Bohec; C. A. Bost; Yvon Le Maho; Henri Weimerskirch; Yves Handrich
ABSTRACT Little is known about the early life at sea of marine top predators, like deep-diving king penguins (Aptenodytes patagonicus), although this dispersal phase is probably a critical phase in their life. Apart from finding favourable foraging sites, they have to develop effective prey search patterns as well as physiological capacities that enable them to capture sufficient prey to meet their energetic needs. To investigate the ontogeny of their thermoregulatory responses at sea, we implanted 30 juvenile king penguins and 8 adult breeders with a small data logger that recorded pressure and subcutaneous temperature continuously for up to 2.5 years. We found important changes in the development of peripheral temperature patterns of foraging juvenile king penguins throughout their first year at sea. Peripheral temperature during foraging bouts fell to increasingly lower levels during the first 6 months at sea, after which it stabilized. Most importantly, these changes re-occurred during their second year at sea, after birds had fasted for ∼4 weeks on land during their second moult. Furthermore, similar peripheral temperature patterns were also present in adult birds during foraging trips throughout their breeding cycle. We suggest that rather than being a simple consequence of concurrent changes in dive effort or an indication of a physiological maturation process, these seasonal temperature changes mainly reflect differences in thermal insulation. Heat loss estimates for juveniles at sea were initially high but declined to approximately half after ∼6 months at sea, suggesting that juvenile king penguins face a strong energetic challenge during their early oceanic existence. Summary: Important changes in peripheral temperature patterns during foraging occur in juvenile king penguins throughout their first year at sea, probably reflecting changes in body insulation that suggest an energetic challenge.
Methods in Ecology and Evolution | 2018
Sebastian Richter; Richard Gerum; Werner Schneider; Ben Fabry; Céline Le Bohec; Daniel P. Zitterbart
The rapid loss of biodiversity linked to the effects of humaninduced environmental changes is one of the most important challenges we face today (IPCC, 2014). Polar regions are experiencing particularly rapid and drastic changes, which is alarming as polar species still remain poorly studied due to technical and logistical challenges imposed by the harsh environment and extreme remoteness (Le Bohec, Whittington, & Le Maho, 2013). Developing technologies and tools for monitoring such wildlife populations is, therefore, a matter of urgency. Continuous data collection over prolonged time periods is the mainstay of ecological and behavioural studies for understanding population trends and group dynamics. Time lapse imaging has become a standard tool due to the availability of digital cameras (Kucera & Barrett, 1993; Lynch, Alderman, & Hobday, 2015; Newbery & Southwell, 2009) as well as the steadily increasing capability of image processing Received: 22 December 2017 | Accepted: 3 January 2018 DOI: 10.1111/2041-210X.12971
Journal of Physics D | 2018
Richard Gerum; Sebastian Richter; Ben Fabry; Céline Le Bohec; Francesco Bonadonna; Anna Nesterova; Daniel P. Zitterbart
During breeding, king penguins do not build nests, however they show strong territorial behaviour and keep a pecking distance to neighbouring penguins. Penguin positions in breeding colonies are highly stable over weeks and appear regularly spaced, but thus far no quantitative analysis of the structural order inside a colony has been performed. In this study, we use the radial distribution function to analyse the spatial coordinates of penguin positions. Coordinates are obtained from aerial images of two colonies that were observed for several years. Our data demonstrate that the structural order in king penguin colonies resembles a 2-dimensional liquid of particles with a Lennard-Jones-type interaction potential. We verify this using a molecular dynamics simulation with thermally driven particles, whereby temperature corresponds to penguin movements, the energy well depth e of the attractive potential corresponds to the strength of the colony-forming behaviour, and the repulsive zone corresponds to the pecking radius. We can recapitulate the liquid disorder of the colony, as measured by the radial distribution function, when the particles have a temperature of several (1.4-10) ε/k B and a normally distributed repulsive radius. To account for the observation that penguin positions are stable over the entire breeding period, we hypothesize that the liquid disorder is quenched during the colony formation process. Quenching requires the temperature to fall considerably below 1 ε/k B, which corresponds to a glass transition, or the repulsion radius to exceed the distance between neighbouring penguins, which corresponds to a jamming transition. Video recordings of a breeding colony together with simulations suggest that quenching is achieved by a behavioural motility arrest akin to a glass transition. We suggest that a liquid disordered colony structure provides an ideal compromise between high density and high flexibility to respond to external disturbances that require a repositioning of penguins.
PLOS ONE | 2011
Claire Saraux; Vincent A. Viblanc; Nicolas Hanuise; Yvon Le Maho; Céline Le Bohec
Marine Biology | 2012
Emeline Pettex; Svein-Håkon Lorentsen; David Grémillet; Olivier Gimenez; Robert T. Barrett; Jean-Baptiste Pons; Céline Le Bohec; Francesco Bonadonna