Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Céline Leroy is active.

Publication


Featured researches published by Céline Leroy.


Annals of Botany | 2008

Comparison between the anatomical and morphological structure of leaf blades and foliar domatia in the ant-plant Hirtella physophora (Chrysobalanaceae).

Céline Leroy; Alain Jauneau; Angélique Quilichini; Alain Dejean; Jérôme Orivel

BACKGROUND AND AIMSnMyrmecophytes, or ant-plants, are characterized by their ability to shelter colonies of some ant species in hollow structures, or ant-domatia, that are often formed by hypertrophy of the internal tissue at specific locations (i.e. trunk, branches, thorns and leaf pouches). In Hirtella physophora (Chrysobalanaceae), the focal species of this study, the ant-domatia consist of leaf pouches formed when the leaf rolls over onto itself to create two spheres at the base of the blade.nnnMETHODSnThe morphological and anatomical changes through which foliar ant-domatia developed from the laminas are studied for the first time by using fresh and fixed mature leaves from the same H. physophora individuals.nnnKEY RESULTSnAnt-domatia were characterized by larger extra-floral nectaries, longer stomatal apertures and lower stomatal density. The anatomical structure of the domatia differed in the parenchymatous tissue where palisade and spongy parenchyma were indistinct; chloroplast density was lower and lignified sclerenchymal fibres were more numerous compared with the lamina. In addition, the domatia were thicker than the lamina, largely because the parenchymatous and epidermal cells were enlarged.nnnCONCLUSIONSnHerein, the morphological and anatomical changes that permit foliar ant-domatia to be defined as a specialized leaf structure are highlighted. Similarities as well as structural modifications in the foliar ant-domatia compared with the lamina are discussed from botanical, functional and mutualistic points of view. These results are also important to understanding the reciprocal evolutionary changes in traits and, thus, the coevolutionary processes occurring in insect-plant mutualisms.


Plant Biology | 2014

Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg.

Jean-François Carrias; Régis Céréghino; Olivier Brouard; Laurent Pélozuelo; Alain Dejean; A. Couté; Bruno Corbara; Céline Leroy

The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics.


Naturwissenschaften | 2008

Nest site selection and induced response in a dominant arboreal ant species

Alain Dejean; Julien Grangier; Céline Leroy; Jérôme Orivel; Marc Gibernau

It is well known that arboreal ants, both territorially dominant species and plant ants (e.g., species associated with myrmecophytes or plants housing them in hollow structures), protect their host trees from defoliators. Nevertheless, the presence of an induced defense, suggested by the fact that the workers discovering a leaf wound recruit nestmates, is only known for plant ants. Based on the results from a field study, we show here (1) that colonies of Azteca chartifex, a territorially dominant, neotropical arboreal ant species, mostly selected Goupia glabra (Goupiaceae) trees in which to build their principal carton nests and (2) that plant signals induced workers to recruit nestmates, which patrol the leaves, likely providing the plant with a biotic defense. Furthermore, the number of recruited workers was clearly higher on G. glabra, their most frequently selected host tree species, than on other tree species. These results show that contrary to what was previously believed, induced responses are also found in territorially dominant arboreal ants and so are not limited to the specific associations between myrmecophytes and plant ants.


Hydrobiologia | 2017

What drives detrital decomposition in neotropical tank bromeliads

Céline Leroy; Bruno Corbara; Olivier Dézerald; M. Kurtis Trzcinski; Jean-François Carrias; Alain Dejean; Régis Céréghino

Decomposition experiments that control leaf litter species across environments help to disentangle the roles of litter traits and consumer diversity, but once we account for leaf litter effects, they tell us little about the variance in decomposition explained by shifts in environmental conditions versus food-web structure. We evaluated how habitat, food-web structure, leaf litter species, and the interactions between these factors affect litter mass loss in a neotropical ecosystem. We used water-filled bromeliads to conduct a reciprocal transplant experiment of two litter species between an open and a forested habitat in French Guiana, and coarse- and fine-mesh enclosures embedded within bromeliads to exclude invertebrates or allow them to colonize leaf litter disks. Soft Melastomataceae leaves decomposed faster in their home habitat, whereas tough Eperua leaves decomposed equally in both habitats. Bacterial densities did not differ significantly between the two habitats. Significant shifts in the identity and biomass of invertebrate detritivores across habitats did not generate differences in leaf litter decomposition, which was essentially microbial. Despite the obvious effects of habitats on food-web structure, ecosystem processes are not necessarily affected. Our results pose the question of when does environmental determinism matter for ecosystem functions, and when does it not.


Evolutionary Ecology | 2016

Convergent evolution of intraguild predation in phytotelm-inhabiting mosquitoes

Stanislas Talaga; Céline Leroy; Régis Céréghino; Alain Dejean

Intraguild predation (IGP) is a type of biological interaction involving the killing and consuming of competing species that exploit similar and often limited resources. This phenomenon is widespread among a great variety of taxonomic groups and has already been reported for mosquito (Diptera: Culicidae) larvae. Moreover, the larvae of certain mosquito species of the tribe Sabethini have evolved modified mouthparts ending in rigid apical structures signaling their capacity to be effective intraguild predators. We assumed that IGP confers a selective advantage under severe competitive conditions by both providing an immediate energetic gain and reducing potential competition. Because potential competition is likely to increase with decreasing habitat size, we hypothesized that the proportion of species with modified mouthparts would increase in smaller aquatic habitats. We tested this hypothesis by examining the mosquito species naturally associated with phytotelmata of decreasing sizes in French Guiana. We show that the degree of specialization in mosquito-phytotelm associations is high, suggesting a long coevolutive process. Indeed, short-term interaction experiments confirmed that species with modified mouthparts are able to prey upon similarly-sized intraguild prey and are, thus, effective intraguild predators. In addition, these species are larger and associated with smaller phytotelmata than those with typical mouthparts. Moreover, below a certain threshold of phytotelm size, only species with modified mouthparts were present. These results show that IGP confers a selective advantage under severe competitive conditions and results from the coadaptation of mosquito species to their specific phytotelm habitat. The presence of functionally analogous structures in different mosquito genera also implies that IGP has emerged from convergent evolution in small phytotelmata.


Urban Ecosystems | 2017

Urbanization impacts the taxonomic and functional structure of aquatic macroinvertebrate communities in a small Neotropical city

Stanislas Talaga; Olivier Dézerald; Alexis Carteron; Céline Leroy; Jean-François Carrias; Régis Céréghino; Alain Dejean

Due to habitat fragmentation, resource disruption and pollution, urbanization is one of the most destructive forms of anthropization affecting ecosystems worldwide. Generally, human-mediated perturbations dramatically alter species diversity in urban sites compared to the surroundings, thus influencing the functioning of the entire ecosystem. We investigated the taxonomic and functional diversity patterns of the aquatic macroinvertebrate communities in tank bromeliads by comparing those found in a small Neotropical city with those from an adjacent rural site. Changes in the quality of detrital inputs in relation to lower tree diversity and the presence of synanthropic species are likely important driving forces behind the observed structural changes in the urban site. Leaf-litter processors (i.e., shredders, scrapers) were positively affected in the urban site, while filter-feeders that process smaller particles produced by the activity of the shredders were negatively affected. Because we cannot ascertain whether the decline in filter-feeders is related to food web-mediated effects or to competitive exclusion (Aedes aegypti mosquitoes were present in urban bromeliads only), further studies are necessary to account for the effects of intra-guild competition or inter-guild facilitation.


Proceedings of the Royal Society B: Biological Sciences | 2017

Trade-offs in an ant - plant - fungus mutualism

Jérôme Orivel; Pierre-Jean G. Malé; Jérémie Lauth; Olivier Roux; Frédéric Petitclerc; Alain Dejean; Céline Leroy

Species engaged in multiple, simultaneous mutualisms are subject to trade-offs in their mutualistic investment if the traits involved in each interaction are overlapping, which can lead to conflicts and affect the longevity of these associations. We investigate this issue via a tripartite mutualism involving an ant plant, two competing ant species and a fungus the ants cultivate to build galleries under the stems of their host plant to capture insect prey. The use of the galleries represents an innovative prey capture strategy compared with the more typical strategy of foraging on leaves. However, because of a limited worker force in their colonies, the prey capture behaviour of the ants results in a trade-off between plant protection (i.e. the ants patrol the foliage and attack intruders including herbivores) and ambushing prey in the galleries, which has a cascading effect on the fitness of all of the partners. The quantification of partners traits and effects showed that the two ant species differed in their mutualistic investment. Less investment in the galleries (i.e. in fungal cultivation) translated into more benefits for the plant in terms of less herbivory and higher growth rates and vice versa. However, the greater vegetative growth of the plants did not produce a positive fitness effect for the better mutualistic ant species in terms of colony size and production of sexuals nor was the mutualist compensated by the wider dispersal of its queens. As a consequence, although the better ant mutualist is the one that provides more benefits to its host plant, its lower host–plant exploitation does not give this ant species a competitive advantage. The local coexistence of the ant species is thus fleeting and should eventually lead to the exclusion of the less competitive species.


The Science of Nature | 2018

Highly modular pattern in ant-plant interactions involving specialized and non-specialized myrmecophytes

Alain Dejean; Frédéric Azémar; Frédéric Petitclerc; Jacques H. C. Delabie; Bruno Corbara; Céline Leroy; Régis Céréghino; Arthur Compin

Because Tachia guianensis (Gentianaceae) is a “non-specialized myrmecophyte” associated with 37 ant species, we aimed to determine if its presence alters the ant guild associated with sympatric “specialized myrmecophytes” (i.e., plants sheltering a few ant species in hollow structures). The study was conducted in a hilly zone of a neotropical rainforest where two specialized myrmecophytes grow at the bottom of the slopes, another at mid-slope, and a fourth on the hilltops. Tachia guianensis, which occurred everywhere, had its own guild of associated ant species. A network analysis showed that its connections with the four other myrmecophytes were rare and weak, the whole resulting in a highly modular pattern of interactions with one module (i.e., subnetwork) per myrmecophyte. Three ant species parasitized three out of the four specialized myrmecophytes (low nestedness noted), but were not or barely associated with T. guianensis that therefore did not influence the parasitism of specialized myrmecophytes.


Oecologia | 2018

Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition

Hector Rodriguez Perez; Guillaume Borrel; Céline Leroy; Jean-François Carrias; Bruno Corbara; Diane S. Srivastava; Régis Céréghino

Future climate scenarios forecast a 10–50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112xa0days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12–22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.


Functional Ecology | 2018

Constraints on the functional trait space of aquatic invertebrates in bromeliads

Régis Céréghino; Valério D. Pillar; Diane S. Srivastava; Paula M. de Omena; A. Andrew M. MacDonald; Ignacio M. Barberis; Bruno Corbara; Laura Melissa Guzman; Céline Leroy; Fabiola Ospina Bautista; Gustavo Q. Romero; M. Kurtis Trzcinski; Pavel Kratina; Vanderlei J. Debastiani; Ana Z. Gonçalves; Nicholas A. C. Marino; Vinicius F. Farjalla; Barbara A. Richardson; Michael J. Richardson; Olivier Dézerald; Benjamin Gilbert; Jana S. Petermann; Stanislas Talaga; Gustavo C. O. Piccoli; Merlijn Jocque; Guillermo Montero

Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. nWe examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade‐dependent. nThe major axes of trait variation represented life‐history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life‐history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. nEmpty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies.

Collaboration


Dive into the Céline Leroy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Corbara

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Dézerald

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Corbara

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Diane S. Srivastava

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Jauneau

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge