Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Celine Loncle is active.

Publication


Featured researches published by Celine Loncle.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma

Fabienne Guillaumond; Julie Leca; Orianne Olivares; Marie-Noëlle Lavaut; Nicolas Vidal; Patrice Berthezene; Nelson Dusetti; Celine Loncle; Ezequiel Calvo; Olivier Turrini; Juan L. Iovanna; Richard Tomasini; Sophie Vasseur

Pancreatic ductal adenocarcinoma is one of the most intractable and fatal cancer. The decreased blood vessel density displayed by this tumor not only favors its resistance to chemotherapy but also participates in its aggressiveness due to the consequent high degree of hypoxia. It is indeed clear that hypoxia promotes selective pressure on malignant cells that must develop adaptive metabolic responses to reach their energetic and biosynthetic demands. Here, using a well-defined mouse model of pancreatic cancer, we report that hypoxic areas from pancreatic ductal adenocarcinoma are mainly composed of epithelial cells harboring epithelial-mesenchymal transition features and expressing glycolytic markers, two characteristics associated with tumor aggressiveness. We also show that hypoxia increases the “glycolytic” switch of pancreatic cancer cells from oxydative phosphorylation to lactate production and we demonstrate that increased lactate efflux from hypoxic cancer cells favors the growth of normoxic cancer cells. In addition, we show that glutamine metabolization by hypoxic pancreatic tumor cells is necessary for their survival. Metabolized glucose and glutamine converge toward a common pathway, termed hexosamine biosynthetic pathway, which allows O-linked N-acetylglucosamine modifications of proteins. Here, we report that hypoxia increases transcription of hexosamine biosynthetic pathway genes as well as levels of O-glycosylated proteins and that O-linked N-acetylglucosaminylation of proteins is a process required for hypoxic pancreatic cancer cell survival. Our results demonstrate that hypoxia-driven metabolic adaptive processes, such as high glycolytic rate and hexosamine biosynthetic pathway activation, favor hypoxic and normoxic cancer cell survival and correlate with pancreatic ductal adenocarcinoma aggressiveness.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma

Fabienne Guillaumond; Ghislain Bidaut; Mehdi Ouaissi; Stéphane Servais; Victoire Gouirand; Orianne Olivares; Sophie Lac; Laurence Borge; Julie Roques; Odile Gayet; Michelle Pinault; Cyrille Guimaraes; Jérémy Nigri; Celine Loncle; Marie-Noëlle Lavaut; Stéphane Garcia; Anne Tailleux; Bart Staels; Ezequiel Calvo; Richard Tomasini; Juan L. Iovanna; Sophie Vasseur

Significance Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second deadliest cancer by 2030. Advances in therapeutic treatments are urgently required to fight against this fatal disease. Here, elucidation of the metabolic signature of PDAC has identified the low-density lipoprotein receptor (LDLR), which facilitates cholesterol uptake, as a promising therapeutic target. Blocking of LDLR reduces the proliferative and clonogenic potential of PDAC cells and decreases activation of the ERK1/2 survival pathway. Moreover, LDLR silencing sensitizes PDAC cells to chemotherapeutic drugs and potentiates the tumoral regression promoted by chemotherapy. Finally, Ldlr is highly expressed at all stages of human PDAC and expression is associated with an increased risk of PDAC recurrence. The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse.


Journal of Clinical Investigation | 2016

Cancer-associated fibroblast-derived annexin A6 + extracellular vesicles support pancreatic cancer aggressiveness

Julie Leca; Sébastien Martinez; Sophie Lac; Jérémy Nigri; Véronique Secq; Marion Rubis; Christian Bressy; Arnauld Sergé; Marie-Noëlle Lavaut; Nelson Dusetti; Celine Loncle; Julie Roques; Daniel Pietrasz; Corinne Bousquet; Stéphane Garcia; Samuel Granjeaud; Mehdi Ouaissi; Jean-Baptiste Bachet; Christine Brun; Juan L. Iovanna; Pascale Zimmermann; Sophie Vasseur; Richard Tomasini

The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell-mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF-tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA.


Embo Molecular Medicine | 2012

Homotypic cell cannibalism, a cell-death process regulated by the nuclear protein 1, opposes to metastasis in pancreatic cancer

Carla E. Cano; Maria José Sandi; Tewfik Hamidi; Ezequiel Calvo; Olivier Turrini; Laurent Bartholin; Celine Loncle; Véronique Secq; Stéphane Garcia; Gwen Lomberk; Guido Kroemer; Raul Urrutia; Juan L. Iovanna

Pancreatic adenocarcinoma (PDAC) is an extremely deadly disease for which all treatments available have failed to improve life expectancy significantly. This may be explained by the high metastatic potential of PDAC cells, which results from their dedifferentiation towards a mesenchymal phenotype. Some PDAC present cell‐in‐cell structures whose origin and significance are currently unknown. We show here that cell‐in‐cells form after homotypic cell cannibalism (HoCC). We found PDAC patients whose tumours display HoCC develop less metastasis than those without. In vitro, HoCC was promoted by inactivation of the nuclear protein 1 (Nupr1), and was enhanced by treatment with transforming growth factor β. HoCC ends with death of PDAC cells, consistent with a metastasis suppressor role for this phenomenon. Hence, our data indicates a protective role for HoCC in PDAC and identifies Nupr1 as a molecular regulator of this process.


PLOS ONE | 2008

Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria?

Chanaz Salmi; Celine Loncle; Nicolas Vidal; Yves Letourneux; Jacques Fantini; Marc Maresca; Nadira Taïeb; Jean-Marie Pagès; Jean Michel Brunel

We reported that squalamine is a membrane-active molecule that targets the membrane integrity as demonstrated by the ATP release and dye entry. In this context, its activity may depend on the membrane lipid composition. This molecule shows a preserved activity against bacterial pathogens presenting a noticeable multi-resistance phenotype against antibiotics such as polymyxin B. In this context and because of its structure, action and its relative insensitivity to efflux resistance mechanisms, we have demonstrated that squalamine appears as an alternate way to combat MDR pathogens and by pass the gap regarding the failure of new active antibacterial molecules.


Journal of Clinical Investigation | 2014

IER3 supports KRASG12D-dependent pancreatic cancer development by sustaining ERK1/2 phosphorylation

Maria Noé Garcia; Daniel Grasso; Maria Belen Lopez-Millan; Tewfik Hamidi; Celine Loncle; Richard Tomasini; Gwen Lomberk; Françoise Porteu; Raul Urrutia; Juan L. Iovanna

Activating mutations in the KRAS oncogene are prevalent in pancreatic ductal adenocarcinoma (PDAC). We previously demonstrated that pancreatic intraepithelial neoplasia (PanIN) formation, which precedes malignant transformation, associates with the expression of immediate early response 3 (Ier3) as part of a prooncogenic transcriptional pathway. Here, we evaluated the role of IER3 in PanIN formation and PDAC development. In human pancreatic cancer cells, IER3 expression efficiently sustained ERK1/2 phosphorylation by inhibiting phosphatase PP2A activity. Moreover, IER3 enhanced KrasG12D-dependent oncogenesis in the pancreas, as both PanIN and PDAC development were delayed in IER3-deficient KrasG12D mice. IER3 expression was discrete in healthy acinar cells, becoming highly prominent in peritumoral acini, and particularly high in acinar ductal metaplasia (ADM) and PanIN lesions, where IER3 colocalized with phosphorylated ERK1/2. However, IER3 was absent in undifferentiated PDAC, which suggests that the IER3-dependent pathway is an early event in pancreatic tumorigenesis. IER3 expression was induced by both mild and severe pancreatitis, which promoted PanIN formation and progression to PDAC in KrasG12D mice. In IER3-deficient mice, pancreatitis abolished KrasG12D-induced proliferation, which suggests that pancreatitis enhances the oncogenic effect of KRAS through induction of IER3 expression. Together, our data indicate that IER3 supports KRASG12D-associated oncogenesis in the pancreas by sustaining ERK1/2 phosphorylation via phosphatase PP2A inhibition.


American Journal of Pathology | 2015

Transcriptomic Analysis Predicts Survival and Sensitivity to Anticancer Drugs of Patients with a Pancreatic Adenocarcinoma

Pauline Duconseil; Marine Gilabert; Odile Gayet; Celine Loncle; Vincent Moutardier; Olivier Turrini; Ezequiel Calvo; Jacques Ewald; Marc Giovannini; Mohamed Gasmi; Erwan Bories; Marc Barthet; Mehdi Ouaissi; Anthony Gonçalves; Flora Poizat; Jean Luc Raoul; Véronique Secq; Stéphane Garcia; Patrice Viens; Juan L. Iovanna; Nelson Dusetti

A major impediment to the effective treatment of patients with pancreatic ductal adenocarcinoma (PDAC) is the molecular heterogeneity of this disease, which is reflected in an equally diverse pattern of clinical outcome and in responses to therapies. We developed an efficient strategy in which PDAC samples from 17 consecutive patients were collected by endoscopic ultrasound-guided fine-needle aspiration or surgery and were preserved as breathing tumors by xenografting and as a primary culture of epithelial cells. Transcriptomic analysis was performed from breathing tumors by an Affymetrix approach. We observed significant heterogeneity in the RNA expression profile of tumors. However, the bioinformatic analysis of these data was able to discriminate between patients with long- and short-term survival corresponding to patients with moderately or poorly differentiated PDAC tumors, respectively. Primary culture of cells allowed us to analyze their relative sensitivity to anticancer drugs in vitro using a chemogram, similar to the antibiogram for microorganisms, establishing an individual profile of drug sensitivity. As expected, the response was patient dependent. We also found that transcriptomic analysis predicts the sensitivity of cells to the five anticancer drugs most frequently used to treat patients with PDAC. In conclusion, using this approach, we found that transcriptomic analysis could predict the sensitivity to anticancer drugs and the clinical outcome of patients with PDAC.


Embo Molecular Medicine | 2017

Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts

Benjamin Bian; Martin Bigonnet; Odile Gayet; Celine Loncle; Aurélie Maignan; Marine Gilabert; Vincent Moutardier; Stéphane Garcia; Olivier Turrini; Jean Robert Delpero; Marc Giovannini; Philippe Grandval; Mohamed Gasmi; Mehdi Ouaissi; Véronique Secq; Flora Poizat; Rémy Nicolle; Yuna Blum; Laetitia Marisa; Marion Rubis; Jean Luc Raoul; James E. Bradner; Jun Qi; Gwen Lomberk; Raul Urrutia; Andrés Saúl; Nelson Dusetti; Juan L. Iovanna

c‐MYC controls more than 15% of genes responsible for proliferation, differentiation, and cellular metabolism in pancreatic as well as other cancers making this transcription factor a prime target for treating patients. The transcriptome of 55 patient‐derived xenografts show that 30% of them share an exacerbated expression profile of MYC transcriptional targets (MYC‐high). This cohort is characterized by a high level of Ki67 staining, a lower differentiation state, and a shorter survival time compared to the MYC‐low subgroup. To define classifier expression signature, we selected a group of 10 MYC target transcripts which expression is increased in the MYC‐high group and six transcripts increased in the MYC‐low group. We validated the ability of these markers panel to identify MYC‐high patient‐derived xenografts from both: discovery and validation cohorts as well as primary cell cultures from the same patients. We then showed that cells from MYC‐high patients are more sensitive to JQ1 treatment compared to MYC‐low cells, in monolayer, 3D cultured spheroids and in vivo xenografted tumors, due to cell cycle arrest followed by apoptosis. Therefore, these results provide new markers and potentially novel therapeutic modalities for distinct subgroups of pancreatic tumors and may find application to the future management of these patients within the setting of individualized medicine clinics.


Gut | 2014

Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis

Carla E. Cano; Tewfik Hamidi; Maria Noé Garcia; Daniel Grasso; Celine Loncle; Stéphane Garcia; Ezequiel Calvo; Gwen Lomberk; Nelson Dusetti; Laurent Bartholin; Raul Urrutia; Juan L. Iovanna

Background Nuclear protein 1 (Nupr1) is a major factor in the cell stress response required for KrasG12D-driven formation of pancreatic intraepithelial neoplastic lesions (PanINs). We evaluated the relevance of Nupr1 in the development of pancreatic cancer. Methods We investigated the role of Nupr1 in pancreatic ductal adenocarcinoma (PDAC) progression beyond PanINs in Pdx1-cre;LSL-KrasG12D;Ink4a/Arffl/fl(KIC) mice. Results Even in the context of the second tumorigenic hit of Ink4a/Arf deletion, Nupr1 deficiency led to suppression of malignant transformation involving caspase 3 activation in premalignant cells of KIC pancreas. Only half of Nupr1-deficient;KIC mice achieved PDAC development, and incident cases survived longer than Nupr1wt;KIC mice. This was associated with the development of well-differentiated PDACs in Nupr1-deficient;KIC mice, which displayed enrichment of genes characteristic of the recently identified human classical PDAC subtype. Nupr1-deficient;KIC PDACs also shared with human classical PDACs the overexpression of the Kras-activation gene signature. In contrast, Nupr1wt;KIC mice developed invasive PDACs with enriched gene signature of human quasi-mesenchymal (QM) PDACs. Cells derived from Nupr1-deficient;KIC PDACs growth in an anchorage-independent manner in vitro had higher aldehyde dehydrogenase activity and overexpressed nanog, Oct-4 and Sox2 transcripts compared with Nupr1wt;KIC cells. Moreover, Nupr1-deficient and Nurpr1wt;KIC cells differed in their sensitivity to the nucleoside analogues Ly101-4b and WJQ63. Together, these findings show the pivotal role of Nupr1 in both the initiation and late stages of PDAC in vivo, with a potential impact on PDAC cell stemness. Conclusions According to Nupr1 status, KIC mice develop tumours that phenocopy human classical or QM-PDAC, respectively, and present differential drug sensitivity, thus becoming attractive models for preclinical drug trials.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2008

Antimicrobial Activities of 3-Amino- and Polyaminosterol Analogues of Squalamine and Trodusquemine

Chanaz Salmi; Celine Loncle; Nicolas Vidal; Michèle Laget; Yves Letourneux; Jean Michel Brunel

A series of 3-amino- and polyaminosterol analogues of squalamine and trodusquemine were synthesized and evaluated for their in vitro antimicrobial properties against human pathogens. The activity was highly dependent on the structure of the different compounds involved and the best results were obtained with aminosterol derivatives 4b, 4e, 8b, 8e and 8n exhibiting minimum inhibitory concentrations (MICs) against yeasts, Gram positive and Gram negative bacteria at average concentrations of 3.12–12.5 μM.

Collaboration


Dive into the Celine Loncle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mehdi Ouaissi

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nelson Dusetti

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Mohamed Gasmi

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Giovannini

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Flora Poizat

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge