Céline Masclaux-Daubresse
Agro ParisTech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Céline Masclaux-Daubresse.
Journal of Experimental Botany | 2011
Céline Masclaux-Daubresse; Fabien Chardon
Nineteen Arabidopsis accessions grown at low (LOW N) and high (HIGH N) nitrate supplies were labelled using 15N to trace nitrogen remobilization to the seeds. Effects of genotype and nutrition were examined. Nitrate availability affected biomass and yield, and highly modified the nitrogen concentration in the dry remains. Surprisingly, variations of one-seed dry weight (DW1S) and harvest index (HI) were poorly affected by nutrition. Nitrogen harvest index (NHI) was highly correlated with HI and showed that nitrogen use efficiency (NUE) was increased at LOW N. Nitrogen remobilization efficiency (NRE), as 15N partitioning in seeds (15NHI), was also higher at LOW N. The relative specific abundance (RSA) in seeds and whole plants indicated that the 14NO3 absorbed post-labelling was mainly allocated to the seeds (SEEDS) at LOW N, but to the dry remains (DR) at HIGH N. Nitrogen concentration (N%) in the DR was then 4-fold higher at HIGH N compared with LOW N, whilst N% in seeds was poorly modified. Although NHI and 15NHI were highly correlated to HI, significant variations in NUE and NRE were identified using normalization to HI. New insights provided in this report are helpful for the comprehension of NUE and NRE concepts in Arabidopsis as well as in crops and especially in Brassica napus.
Journal of Experimental Botany | 2012
Fabien Chardon; Valérie Noël; Céline Masclaux-Daubresse
There is evidence that crop yields are showing a trend of stagnation in many countries. This review aims to make an inventory of the last decades crop productions and the associated economic and environmental challenges. Manipulating nitrogen use efficiency in crops appears to be the best way to conciliate global food security, respecting environmental policies, and the need to produce biofuels. In such a context, the specifications of ideal plants for the future are discussed with regards to human needs and taking into account current physiological and genetic knowledge. The approaches undertaken so far to design an ideal crop and to find suitable new germplasms are discussed. The interest in using model plants in agronomic research is illustrated through the recent data provided by studies exploring natural variation in Arabidopsis thaliana. Efficient Arabidopsis ideotypes are proposed and discussed.
PLOS ONE | 2011
Rodnay Sormani; Céline Masclaux-Daubresse; Françoise Daniele-Vedele; Fabien Chardon
Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429 genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as telo box in their promoters. We proposed a model for the “ribosome code” that influences the ribosome biogenesis by three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid genes.
Frontiers in Plant Science | 2014
Mathieu Pottier; Céline Masclaux-Daubresse; Kohki Yoshimoto; Sébastien Thomine
Seed formation is an important step of plant development which depends on nutrient allocation. Uptake from soil is an obvious source of nutrients which mainly occurs during vegetative stage. Because seed filling and leaf senescence are synchronized, subsequent mobilization of nutrients from vegetative organs also play an essential role in nutrient use efficiency, providing source-sink relationships. However, nutrient accumulation during the formation of seeds may be limited by their availability in source tissues. While several mechanisms contributing to make leaf macronutrients available were already described, little is known regarding micronutrients such as metals. Autophagy, which is involved in nutrient recycling, was already shown to play a critical role in nitrogen remobilization to seeds during leaf senescence. Because it is a non-specific mechanism, it could also control remobilization of metals. This article reviews actors and processes involved in metal remobilization with emphasis on autophagy and methodology to study metal fluxes inside the plant. A better understanding of metal remobilization is needed to improve metal use efficiency in the context of biofortification.
Journal of Experimental Botany | 2016
Marien Havé; Anne Marmagne; Fabien Chardon; Céline Masclaux-Daubresse
As a result of climate changes, land use and agriculture have to adapt to new demands. Agriculture is responsible for a large part of the greenhouse gas (GHG) emissions that have to be urgently reduced in order to protect the environment. At the same time, agriculture has to cope with the challenges of sustainably feeding a growing world population. Reducing the use of the ammonia-nitrate fertilizers that are responsible for a large part of the GHGs released and that have a negative impact on carbon balance is one of the objectives of precision agriculture. One way to reduce N fertilizers without dramatically affecting grain yields is to improve the nitrogen recycling and remobilization performances of plants. Mechanisms involved in nitrogen recycling, such as autophagy, are essential for nutrient remobilization at the whole-plant level and for seed quality. Studies on leaf senescence and nutrient recycling provide new perspectives for improvement. The aim of this review is to give an overview of the mechanisms involved in nitrogen recycling and remobilization during leaf senescence and to present the different approaches undertaken to improve nitrogen remobilization efficiency using both model plants and crop species.
Journal of Experimental Botany | 2014
Fabien Chardon; Sophie Jasinski; Monique Durandet; Alain Lécureuil; Fabienne Soulay; Magali Bedu; Philippe Guerche; Céline Masclaux-Daubresse
Summary Mapping of metaQTL controlling leaf senescence and seed resource allocation in Arabidopsis reveals that leaf senescence might disrupt the general negative correlation observed between yield and seed nitrogen concentration.
New Phytologist | 2018
Mechthild Tegeder; Céline Masclaux-Daubresse
Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Current Opinion in Plant Biology | 2017
Céline Masclaux-Daubresse; Qinwu Chen; Marien Havé
Autophagy is a universal mechanism in eukaryotes that promotes cell longevity and nutrient recycling through the degradation of unwanted organelles, proteins and damaged cytoplasmic compounds. Autophagy is important in plant resistance to stresses and starvations and in remobilization. Autophagy facilitates bulk and selective degradations, through the delivery of cell material to the vacuole where hydrolases and proteases reside. Large metabolite modifications are observed in autophagy mutants showing the important role of autophagy in cell homeostasis. The control of autophagic activity by nutrients and energy status is supported by several studies in plant and animal. We review how autophagy contributes to nutrient management in plants and how nutrient status control this degradation pathway for adaptation to the environment.
Journal of Experimental Botany | 2018
Marien Havé; Thierry Balliau; Betty Cottyn-Boitte; Emeline Dérond; Gwendal Cueff; Fabienne Soulay; Aurélia Lornac; Pavel Reichman; Nico Dissmeyer; Jean Christophe Avice; Patrick Gallois; Loïc Rajjou; Michel Zivy; Céline Masclaux-Daubresse
Abstract Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Journal of Experimental Botany | 2018
Tamar Avin-Wittenberg; František Baluška; Peter V. Bozhkov; Pernilla H Elander; Alisdair R. Fernie; Gad Galili; Ammar Hassan; Daniel Hofius; Erika Isono; Romain Le Bars; Céline Masclaux-Daubresse; Elena A. Minina; Hadas Peled-Zehavi; Núria S. Coll; Luisa M. Sandalio; Béatrice Satiat-Jeunemaitre; Agnieszka Sirko; P.S. Testillano; Henri Batoko; Chris Hawes
Autophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway. In the framework of the COST (European Cooperation in Science and Technology) action TRANSAUTOPHAGY (2016-2020), we decided to review our current knowledge of autophagy responses in higher plants, with emphasis on knowledge gaps. We also assess here the potential of translating the acquired knowledge to improve crop plant growth and development in a context of growing social and environmental challenges for agriculture in the near future.