Celine Perier
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Celine Perier.
Neurorx | 2005
Jordi Bové; Delphine Prou; Celine Perier; Serge Przedborski
SummaryParkinson’s disease (PD) is a common neurodegenerative disease that appears essentially as a sporadic condition. It results mainly from the death of dopaminergic neurons in the substantia nigra. PD etiology remains mysterious, whereas its pathogenesis begins to be understood as a multifactorial cascade of deleterious factors. Most insights into PD pathogenesis come from investigations performed in experimental models of PD, especially those produced by neurotoxins. Although a host of natural and synthetic molecules do exert deleterious effects on dopaminergic neurons, only a handful are used in living laboratory animals to recapitulate some of the hallmarks of PD. In this review, we discuss what we believe are the four most popular parkinsonian neurotoxins, namely 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat. The main goal is to provide an updated summary of the main characteristics of each of these four neurotoxins. However, we also try to provide the reader with an idea about the various strengths and the weaknesses of these neurotoxic models.
The Journal of Neuroscience | 2010
Benjamin Dehay; Jordi Bové; Natalia Rodriguez-Muela; Celine Perier; Ariadna Recasens; Patricia Boya; Miquel Vila
Mounting evidence suggests a role for autophagy dysregulation in Parkinsons disease (PD). The bulk degradation of cytoplasmic proteins (including α-synuclein) and organelles (such as mitochondria) is mediated by macroautophagy, which involves the sequestration of cytosolic components into autophagosomes (AP) and its delivery to lysosomes. Accumulation of AP occurs in postmortem brain samples from PD patients, which has been widely attributed to an induction of autophagy. However, the cause and pathogenic significance of these changes remain unknown. Here we found in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of PD that AP accumulation and dopaminergic cell death are preceded by a marked decrease in the amount of lysosomes within dopaminergic neurons. Lysosomal depletion was secondary to the abnormal permeabilization of lysosomal membranes induced by increased mitochondrial-derived reactive oxygen species. Lysosomal permeabilization resulted in a defective clearance and subsequent accumulation of undegraded AP and contributed directly to neurodegeneration by the ectopic release of lysosomal proteases into the cytosol. Lysosomal breakdown and AP accumulation also occurred in PD brain samples, where Lewy bodies were strongly immunoreactive for AP markers. Induction of lysosomal biogenesis by genetic or pharmacological activation of lysosomal transcription factor EB restored lysosomal levels, increased AP clearance and attenuated 1-methyl-4-phenylpyridinium-induced cell death. Similarly, the autophagy-enhancer compound rapamycin attenuated PD-related dopaminergic neurodegeneration, both in vitro and in vivo, by restoring lysosomal levels. Our results indicate that AP accumulation in PD results from defective lysosomal-mediated AP clearance secondary to lysosomal depletion. Restoration of lysosomal levels and function may thus represent a novel neuroprotective strategy in PD.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Eva Andres-Mateos; Celine Perier; Li Zhang; Béatrice Blanchard-Fillion; Todd M. Greco; Bobby Thomas; Han Seok Ko; Masayuki Sasaki; Harry Ischiropoulos; Serge Przedborski; Ted M. Dawson; Valina L. Dawson
Parkinsons disease (PD) is a common neurodegenerative movement disorder. Whereas the majority of PD cases are sporadic, rare genetic defects have been linked to this prevalent movement disorder. Mutations in DJ-1 are associated with autosomal recessive early-onset PD. The exact biochemical function of DJ-1 has remained elusive. Here we report the generation of DJ-1 knockout (KO) mice by targeted deletion of exon 2 and exon 3. There is no observable degeneration of the central dopaminergic pathways, and the mice are anatomically and behaviorally similar to WT mice. Fluorescent Amplex red measurements of H2O2 indicate that isolated mitochondria from young and old DJ-1 KO mice have a 2-fold increase in H2O2. DJ-1 KO mice of 2–3 months of age have a 60% reduction in mitochondrial aconitase activity without compromising other mitochondrial processes. At an early age there are no differences in antioxidant enzymes, but in older mice there is an up-regulation of mitochondrial manganese superoxide dismutase and glutathione peroxidase and a 2-fold increase in mitochondrial glutathione peroxidase activity. Mutational analysis and mass spectrometry reveal that DJ-1 is an atypical peroxiredoxin-like peroxidase that scavenges H2O2 through oxidation of Cys-106. In vivo there is an increase of DJ-1 oxidized at Cys-106 after 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine intoxication of WT mice. Taken together these data indicate that the DJ-1 KO mice have a deficit in scavenging mitochondrial H2O2 due to the physiological function of DJ-1 as an atypical peroxiredoxin-like peroxidase.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Chun Zhou; Yong Huang; Yufang Shao; Jessica May; Delphine Prou; Celine Perier; William T. Dauer; Eric A. Schon; Serge Przedborski
Mutations in PTEN-induced putative kinase 1 (PINK1) are a cause of autosomal recessive familial Parkinsons disease (PD). Efforts in deducing the PINK1 signaling pathway have been hindered by controversy around its subcellular and submitochondrial localization and the authenticity of its reported substrates. We show here that this mitochondrial protein exhibits a topology in which the kinase domain faces the cytoplasm and the N-terminal tail is inside the mitochondria. Although deletion of the transmembrane domain disrupts this topology, common PD-linked PINK1 mutations do not. These results are critical in rectifying the location and orientation of PINK1 in mitochondria, and they should help decipher its normal physiological function and potential pathogenic role in PD.
Annals of Neurology | 2014
Ariadna Recasens; Benjamin Dehay; Jordi Bové; Iria Carballo-Carbajal; Sandra Dovero; Ana Perez-Villalba; Pierre-Olivier Fernagut; Javier Blesa; Annabelle Parent; Celine Perier; Isabel Fariñas; Jose A. Obeso; Erwan Bezard; Miquel Vila
Mounting evidence suggests that α‐synuclein, a major protein component of Lewy bodies (LB), may be responsible for initiating and spreading the pathological process in Parkinson disease (PD). Supporting this concept, intracerebral inoculation of synthetic recombinant α‐synuclein fibrils can trigger α‐synuclein pathology in mice. However, it remains uncertain whether the pathogenic effects of recombinant synthetic α‐synuclein may apply to PD‐linked pathological α‐synuclein and occur in species closer to humans.
Journal of Clinical Investigation | 2003
Kim Tieu; Celine Perier; Casper Caspersen; Peter Teismann; Du-Chu Wu; Shidu Yan; Ali Naini; Miquel Vila; Vernice Jackson-Lewis; Ravichandran Ramasamy; Serge Przedborski
Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the infusion of the ketone body d-beta-hydroxybutyrate (DbetaHB) in mice confers partial protection against dopaminergic neurodegeneration and motor deficits induced by MPTP. These effects appear to be mediated by a complex II-dependent mechanism that leads to improved mitochondrial respiration and ATP production. Because of the safety record of ketone bodies in the treatment of epilepsy and their ability to penetrate the blood-brain barrier, DbetaHB may be a novel neuroprotective therapy for PD.
Journal of Biological Chemistry | 2005
Rina Ved; Shamol Saha; Beth Westlund; Celine Perier; Lucinda Burnam; Anne Sluder; Marius C. Hoener; Cecília M. P. Rodrigues; Aixa Alfonso; Clifford J. Steer; Leo X. Liu; Serge Przedborski; Benjamin Wolozin
How genetic and environmental factors interact in Parkinson disease is poorly understood. We have now compared the patterns of vulnerability and rescue of Caenorhabditis elegans with genetic modifications of three different genetic factors implicated in Parkinson disease (PD). We observed that expressing α-synuclein, deleting parkin (K08E3.7), or knocking down DJ-1 (B0432.2) or parkin produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than nontransgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben, or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (Fe(II) or Cu(II)), or etoposide compared with the nontransgenic nematodes. Each of the PD-related lines was also partially rescued by the antioxidant probucol, the mitochondrial complex II activator, d-β-hydroxybutyrate, or the anti-apoptotic bile acid tauroursodeoxycholic acid. Complete protection in all lines was achieved by combining d-β-hydroxybutyrate with tauroursodeoxycholic acid but not with probucol. These results show that diverse PD-related genetic modifications disrupt the mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD.
The Journal of Neuroscience | 2005
Dong Kug Choi; Subramaniam Pennathur; Celine Perier; Kim Tieu; Peter Teismann; Du Chu Wu; Vernice Jackson-Lewis; Miquel Vila; Jean Paul Vonsattel; Jay W. Heinecke; Serge Przedborski
Parkinsons disease (PD) is characterized by a loss of ventral midbrain dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Inflammatory oxidants have emerged as key contributors to PD- and MPTP-related neurodegeneration. Here, we show that myeloperoxidase (MPO), a key oxidant-producing enzyme during inflammation, is upregulated in the ventral midbrain of human PD and MPTP mice. We also show that ventral midbrain dopaminergic neurons of mutant mice deficient in MPO are more resistant to MPTP-induced cytotoxicity than their wild-type littermates. Supporting the oxidative damaging role of MPO in this PD model are the demonstrations that MPO-specific biomarkers 3-chlorotyrosine and hypochlorous acid-modified proteins increase in the brains of MPTP-injected mice. This study demonstrates that MPO participates in the MPTP neurotoxic process and suggests that inhibitors of MPO may provide a protective benefit in PD.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Benjamin Dehay; Alfredo Ramirez; Marta Martinez-Vicente; Celine Perier; Marie-Hélène Canron; Evelyne Doudnikoff; Anne Vital; Miquel Vila; Christine Klein; Erwan Bezard
Parkinson disease (PD) is a progressive neurodegenerative disorder pathologically characterized by the loss of dopaminergic neurons from the substantia nigra pars compacta and the presence, in affected brain regions, of protein inclusions named Lewy bodies (LBs). The ATP13A2 gene (locus PARK9) encodes the protein ATP13A2, a lysosomal type 5 P-type ATPase that is linked to autosomal recessive familial parkinsonism. The physiological function of ATP13A2, and hence its role in PD, remains to be elucidated. Here, we show that PD-linked mutations in ATP13A2 lead to several lysosomal alterations in ATP13A2 PD patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished lysosomal-mediated clearance of autophagosomes. Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells restores lysosomal function and attenuates cell death. Relevant to PD, ATP13A2 levels are decreased in dopaminergic nigral neurons from patients with PD, in which ATP13A2 mostly accumulates within Lewy bodies. Our results unravel an instrumental role of ATP13A2 deficiency on lysosomal function and cell viability and demonstrate the feasibility and therapeutic potential of modulating ATP13A2 levels in the context of PD.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Celine Perier; Jordi Bové; Du-Chu Wu; Benjamin Dehay; Dong-Kug Choi; Vernice Jackson-Lewis; Silvia Rathke-Hartlieb; Andreas Strasser; Jörg B. Schulz; Serge Przedborski; Miquel Vila
Dysfunction of mitochondrial complex I is associated with a wide spectrum of neurodegenerative disorders, including Parkinsons disease (PD). In rodents, inhibition of complex I leads to degeneration of dopaminergic neurons of the substantia nigra pars compacta (SNpc), as seen in PD, through activation of mitochondria-dependent apoptotic molecular pathways. In this scenario, complex I blockade increases the soluble pool of cytochrome c in the mitochondrial intermembrane space through oxidative mechanisms, whereas activation of pro-cell death protein Bax is actually necessary to trigger neuronal death by permeabilizing the outer mitochondrial membrane and releasing cytochrome c into the cytosol. Activation of Bax after complex I inhibition relies on its transcriptional induction and translocation to the mitochondria. How complex I deficiency leads to Bax activation is currently unknown. Using gene-targeted mice, we show that the tumor suppressor p53 mediates Bax transcriptional induction after PD-related complex I blockade in vivo, but it does not participate in Bax mitochondrial translocation in this model, either by a transcription-independent mechanism or through the induction of BH3-only proteins Puma or Noxa. Instead, Bax mitochondrial translocation in this model relies mainly on the JNK-dependent activation of the BH3-only protein Bim. Targeting either Bax transcriptional induction or Bax mitochondrial translocation results in a marked attenuation of SNpc dopaminergic cell death caused by complex I inhibition. These results provide further insight into the pathogenesis of PD neurodegeneration and identify molecular targets of potential therapeutic significance for this disabling neurological illness.