Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Céline Vidaillac is active.

Publication


Featured researches published by Céline Vidaillac.


Antimicrobial Agents and Chemotherapy | 2010

Activities of High-Dose Daptomycin, Vancomycin, and Moxifloxacin Alone or in Combination with Clarithromycin or Rifampin in a Novel In Vitro Model of Staphylococcus aureus Biofilm

Jorge Parra-Ruiz; Céline Vidaillac; Warren E. Rose; Michael J. Rybak

ABSTRACT Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. The aim of the study was to assess the in vitro activities of several antimicrobials alone or in combination against two Staphylococcus aureus isolates in a novel pharmacokinetic/pharmacodynamic (PK/PD) model of biofilm for 3 days. One methicillin-susceptible S. aureus strain (SH1000) and one methicillin-resistant S. aureus strain (N315) were evaluated in a modified biofilm reactor with polystyrene coupons. Simulated regimens included vancomycin (VAN) plus rifampin (RIF), moxifloxacin (MOX), and high doses (10 mg/kg of body weight/day) of daptomycin (DAP) alone or combined with RIF or clarithromycin (CLA). Against viable planktonic bacteria (PB) and biofilm-embedded bacteria (BB) of SH1000, neither DAP nor MOX alone was bactericidal. In contrast, the combination of DAP or MOX with CLA significantly increased the activity of the two agents against both PB and BB (P < 0.01), and DAP plus CLA reached the limit of detection at 72 h. Against PB of N315, DAP alone briefly achieved bactericidal activity at 24 h, whereas sustained bactericidal activity was observed at 32 h with VAN plus RIF. Overall, only a minimal reduction was observed with both regimens against BB (<2.8 log10 CFU/ml). Finally, the combination of DAP and RIF was bactericidal against both PB and BB, achieving the limit of detection at 72 h. In conclusion, we developed a novel in vitro PK/PD model to assess the activities of antimicrobials against mature bacterial biofilm. Combinations of DAP or MOX with CLA were the most effective regimens and may represent promising options to treat persistent infections caused by S. aureus biofilms.


Antimicrobial Agents and Chemotherapy | 2009

In Vitro Activity of Ceftaroline against Methicillin-Resistant Staphylococcus aureus and Heterogeneous Vancomycin-Intermediate S. aureus in a Hollow Fiber Model

Céline Vidaillac; Steven N. Leonard; Michael J. Rybak

ABSTRACT Ceftaroline is a broad-spectrum injectable cephalosporin exhibiting bactericidal activity against a variety of bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Using a two-compartment in vitro pharmacokinetic/pharmacodynamic (PK/PD) model, we evaluated the activity of ceftaroline at 600 mg every 8 h (q8h) and q12h in comparison with that of vancomycin at 1,000 mg q12h over a 72-h time period against six clinical MRSA isolates, including two heterogeneous vancomycin-intermediate S. aureus (hVISA) isolates. The MIC and minimum bactericidal concentration ranged between 0.125 to 2 and 0.5 to 2 μg/ml for ceftaroline and vancomycin, respectively. In the PK/PD model, ceftaroline was superior to vancomycin against all isolates (P < 0.05), except one to which it was equivalent. No difference in activity was observed between both q8 and q12h dosing regimens of ceftaroline. Bacterial regrowth was observed after 32 h for two isolates treated with ceftaroline. This regrowth was uncorrelated to resistance, instability of the drug, or tolerance. However, subpopulations with higher MICs to ceftaroline were found by population analysis for these two isolates. Finally, and in contrast to ceftaroline, MIC elevations up to 8 to 12 μg/ml were observed with vancomycin for the hVISA isolates. In conclusion, in addition to a lower potential to select resistant mutants, ceftaroline demonstrated activity equal to or greater than vancomycin against MRSA isolates. Although further in vitro and in vivo investigations are warranted, ceftaroline appears to be a promising alternative for the treatment of MRSA infections.


Antimicrobial Agents and Chemotherapy | 2009

In Vitro Activity of Ceftaroline Alone and in Combination against Clinical Isolates of Resistant Gram-Negative Pathogens, Including β-Lactamase-Producing Enterobacteriaceae and Pseudomonas aeruginosa

Céline Vidaillac; Steven N. Leonard; Helio S. Sader; Ronald N. Jones; Michael J. Rybak

ABSTRACT Ceftaroline is a novel broad-spectrum cephalosporin that exhibits bactericidal activity against many gram-positive and -negative pathogens. However, the activity of ceftaroline cannot be solely relied upon for eradication of multidrug-resistant gram-negative isolates, such as Pseudomonas aeruginosa and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, which represent a current clinical concern. As drug combinations might be beneficial by potential synergy, we evaluated the in vitro activity of ceftaroline combined with meropenem, aztreonam, cefepime, tazobactam, amikacin, levofloxacin, and tigecycline. Susceptibility testing was performed for 20 clinical P. aeruginosa isolates, 10 ESBL-producing Escherichia coli isolates, 10 ESBL-producing Klebsiella pneumoniae isolates, and 10 AmpC-derepressed Enterobacter cloacae isolates. Time-kill experiments were performed for 10 isolates using antimicrobials at one-fourth the MIC. Ceftaroline exhibited a MIC range of 0.125 to 1,024 μg/ml and was reduced 2- to 512-fold by combination with tazobactam (4 μg/ml) for ESBL-producing strains. In time-kill experiments, ceftaroline plus amikacin was synergistic against 90% of the isolates (and indifferent for one P. aeruginosa isolate). Ceftaroline plus tazobactam was indifferent for E. cloacae and P. aeruginosa strains but synergistic against 100% of E. coli and K. pneumoniae isolates. Combinations of ceftaroline plus meropenem or aztreonam were also synergistic for all E. coli and E. cloacae isolates, respectively, but indifferent against 90% of the other isolates. Finally, combinations of ceftaroline plus either tigecycline, levofloxacin, or cefepime were indifferent for 100% of the isolates. No antagonism was observed with any combination. Ceftaroline plus amikacin appeared as the most likely synergistic combination. This represents a promising therapeutic option, and further studies are warranted to elucidate the clinical value of ceftaroline combinations against resistant gram-negative pathogens.


Antimicrobial Agents and Chemotherapy | 2007

Synthesis of Omeprazole Analogues and Evaluation of These as Potential Inhibitors of the Multidrug Efflux Pump NorA of Staphylococcus aureus

Céline Vidaillac; Jean Guillon; Corinne Arpin; Isabelle Forfar-Bares; Boubakar B. Ba; Jean Grellet; Stéphane Moreau; Daniel-Henri Caignard; Christian Jarry; Claudine Quentin

ABSTRACT A series of 11 pyrrolo[1,2-a]quinoxaline derivatives, 1a to 1k, sharing structural analogies with omeprazole, a eukaryotic efflux pump inhibitor (EPI) used as an antiulcer agent, was synthesized. Their inhibitory effect was evaluated using Staphylococcus aureus strain SA-1199B overexpressing NorA. By determinations of the MIC of norfloxacin in the presence of these EPIs devoid of intrinsic antibacterial activity and used at 128 μg/ml, and by the checkerboard method, compound 1e (MIC decrease, 16-fold; fractional inhibitory concentration index [ΣFIC], 0.18) appeared to be more active than compounds 1b to 1d, reserpine, and omeprazole (MIC decrease, eightfold; ΣFIC, 0.31), followed by compounds 1a and 1f (MIC decrease, fourfold; ΣFIC, 0.37) and 1g to 1k (MIC decrease, twofold; ΣFIC, 0.50 to 0.56). By time-kill curves combining norfloxacin (1/4 MIC) and the most efficient EPIs (128 μg/ml), compound 1e persistently restored the bactericidal activity of norfloxacin (inoculum reduction, 3 log10 CFU/ml at 8 and 24 h), compound 1f led to a delayed but progressive decrease in the number of viable cells, and compounds 1b to 1d and omeprazole acted synergistically (inoculum reduction, 3 log10 CFU/ml at 8 h but further regrowth), while compound 1a and reserpine slightly enhanced norfloxacin activity. The bacterial uptake of norfloxacin monitored by high-performance liquid chromatography confirmed that compounds 1a to 1f increased antibiotic accumulation, as did reserpine and omeprazole. Since these EPIs did not disturb the Δψ and ΔpH, they might directly interact with the pump. A structure-activity relationships study identified the benzimidazole nucleus of omeprazole as the main structural element involved in efflux pump inhibition and highlighted the critical role of the chlorine substituents in the stability and efficiency of compounds 1e to 1f. However, further pharmacomodulation is required to obtain therapeutically applicable derivatives.


Antimicrobial Agents and Chemotherapy | 2010

Novel Daptomycin Combinations against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus in an In Vitro Model of Simulated Endocardial Vegetations

Molly E. Steed; Céline Vidaillac; Michael J. Rybak

ABSTRACT Reduced susceptibility to daptomycin has been reported in patients with infections due to methicillin-resistant Staphylococcus aureus (MRSA). Although infections with daptomycin-nonsusceptible (DNS) MRSA are infrequent, optimal therapy of these strains has not been determined. We investigated the killing effects of novel antibiotic combinations with daptomycin (DAP) against two clinical DNS MRSA isolates (SA-684 and R6003) in a 72-h in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations (SEV). Simulated regimens included DAP at 6 mg/kg every 24 h (q24h) alone or in combination with trimethoprim-sulfamethoxazole (TMP/SMX) at 160/800 mg q12h, linezolid (LIN) at 600 mg q12h, cefepime (CEF) at 2 g q12h, and nafcillin (NAF) at 4 g q4h. Bactericidal activity was defined as a ≥3-log10 CFU/g kill. Differences in CFU/g were evaluated between 4 and 72 h by analysis of variance with the Bonferroni post hoc test. DAP MICs were 4 and 2 mg/liter for SA-684 and R6003, respectively. In the PK/PD model, DAP alone was slowly bactericidal, achieving a 3-log10 kill at 24 and 50 h for SA-684 and R6003, respectively. Against SA-684, DAP plus TMP/SMX, CEF, LIN, or NAF was bactericidal at 4, 4, 8, and 8 h, respectively, and maintained this activity for the 72-h study duration. DAP plus TMP/SMX or CEF exhibited superior killing than DAP alone against SA-684 between 4 and 72 h, and overall this was significant (P < 0.05). Against R6003, DAP plus TMP/SMX was bactericidal (8 h) and superior to DAP alone between 8 and 72 h (P < 0.001). The unique combination of DAP plus TMP/SMX was the most effective and rapidly bactericidal regimen against the two isolates tested and may provide a clinical option to treat DNS S. aureus infections.


European Journal of Medicinal Chemistry | 2012

Thieno[2,3-d]pyrimidinedione derivatives as antibacterial agents

Mahender B. Dewal; Amit Wani; Céline Vidaillac; David Oupický; Michael J. Rybak; Steven M. Firestine

Several thieno[2,3-d]pyrimidinediones have been synthesized and examined for antibacterial activity against a range of gram-positive and gram-negative pathogens. Two compounds displayed potent activity (2-16 mg/L) against multi-drug resistant gram-positive organisms, including methicillin resistant, vancomycin-intermediate, vancomycin-resistant Staphylococcus aureus (MRSA, VISA, VRSA) and vancomycin-resistant enterococci (VRE). Only one of these agents possessed moderate activity (16-32 mg/L) against gram-negative strains. An examination of the cytotoxicity of these agents revealed that they displayed low toxicity (40-50 mg/L) against mammalian cells and very low hemolytic activity (2-7%). Taken together, these studies suggest that thieno[2,3-d]pyrimidinediones are interesting scaffolds for the development of novel gram-positive antibacterial agents.


Antimicrobial Agents and Chemotherapy | 2009

Activity of Telavancin against Staphylococcus aureus Strains with Various Vancomycin Susceptibilities in an In Vitro Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations

Steven N. Leonard; Céline Vidaillac; Michael J. Rybak

ABSTRACT We investigated the activity of telavancin, a novel lipoglycopeptide, alone and combined with gentamicin or rifampin (rifampicin) against strains of Staphylococcus aureus with various vancomycin susceptibilities. Strains tested included methicillin (meticillin)-resistant S. aureus (MRSA) 494, methicillin-sensitive S. aureus (MSSA) 1199, heteroresistant glycopeptide-intermediate S. aureus (hGISA) 1629, which was confirmed by a population analysis profile, and glycopeptide-intermediate S. aureus (GISA) NJ 992. Regimens of 10 mg/kg telavancin daily and 1 g vancomycin every 12 h were investigated alone and combined with 5 mg/kg gentamicin daily or 300 mg rifampin every 8 h in an in vitro model with simulated endocardial vegetations over 96 h. Telavancin demonstrated significantly greater killing than did vancomycin (P < 0.01) for all isolates except MRSA 494 (P = 0.07). Telavancin absolute reductions, in log10 CFU/g, at 96 h were 2.8 ± 0.5 for MRSA 494, 2.8 ± 0.3 for MSSA 1199, 4.2 ± 0.2 for hGISA 1629, and 4.1 ± 0.3 for GISA NJ 992. Combinations of telavancin with gentamicin significantly enhanced killing compared to telavancin alone against all isolates (P < 0.001) except MRSA 494 (P = 0.176). This enhancement was most evident against hGISA 1629, where killing to the level of detection (2 log10 CFU/g) was achieved at 48 h (P < 0.001). The addition of rifampin to telavancin resulted in significant (P < 0.001) enhancement of killing against only MSSA 1199. No changes in telavancin susceptibilities were observed. These results suggest that telavancin may have therapeutic potential, especially against strains with reduced susceptibility to vancomycin. Combination therapy, particularly with gentamicin, may improve bacterial killing against certain strains.


Antimicrobial Agents and Chemotherapy | 2006

Activity of Gatifloxacin in an In Vitro Pharmacokinetic-Pharmacodynamic Model against Staphylococcus aureus Strains either Susceptible to Ciprofloxacin or Exhibiting Various Levels and Mechanisms of Ciprofloxacin Resistance

Boubakar B. Ba; Corinne Arpin; Céline Vidaillac; Arnaud Chausse; Marie-Claude Saux; Claudine Quentin

ABSTRACT Gatifloxacin (GAT) is a new 8-methoxy fluoroquinolone with enhanced activity against gram-positive cocci. Its activity was studied in an in vitro pharmacokinetic-pharmacodynamic model against five Staphylococcus aureus strains, either susceptible to ciprofloxacin or exhibiting various levels and mechanisms of ciprofloxacin (CIP) resistance: the ATCC 25923 reference strain (MICs of CIP and GAT: 0.5 and 0.1 μg/ml, respectively), its efflux mutant SA-1 (16 and 0.5 μg/ml; mutation in the norA promoter region), and three clinical strains, Sa2102 (2 and 0.2 μg/ml), Sa2667 (4 and 0.5 μg/ml), and Sa2669 (16 and 1 μg/ml), carrying mutations in the grlA (Ser80Tyr or Phe) and gyrA (Ser84Ala) quinolone resistance-determining regions (QRDRs) for Sa2669. Plasmatic pharmacokinetic profiles after daily 1-h perfusion of 400 mg for 48 h were accurately simulated. Thus, mean maximum concentration of drug in serum values for the two administration intervals were 5.36 and 5.80 μg/ml, respectively, and the corresponding half-life at β-phase values were 8.68 and 7.80 h (goodness of fit coefficient, >0.98). Therapeutic concentrations of GAT allowed the complete eradication of the susceptible strain within 12 h (difference between the bacterial counts at the beginning of the treatment and at a defined time: −2.18 at the 1-h time point [t1] and −6.80 at t24 and t48; the bacterial killing and regrowth curve from 0 to 48 h was 30.2 h × log CFU/milliliter). However, mutants (M) with GAT MICs increased by 4- to 40-fold were selected from the other strains. They acquired mutations either supplementary (MSa2102 and MSa2667) or different (Ala84Val for MSa2669) in gyrA or in both gyrA and grlA QRDRs (MSA-1). MSa2667 additionally overproduced efflux system(s) without norA promoter modification. Thus, GAT properties should allow the total elimination of ciprofloxacin-susceptible S. aureus, but resistant mutants might emerge from strains showing reduced susceptibility to older fluoroquinolones independently of the first-step mutation(s).


Infection Control and Hospital Epidemiology | 2011

Growing Prevalence of Vancomycin-Resistant Enterococcus faecalis in the Region with the Highest Prevalence of Vancomycin-Resistant Staphylococcus aureus

Kayoko Hayakawa; Dror Marchaim; Céline Vidaillac; Paul R. Lephart; Jason M. Pogue; Bharath Sunkara; Harikrishna Kotra; Asma Hasan; Maryann Shango; Yashwanth Yerramalla; Adedayo M. Osunlana; Teena Chopra; Sorabh Dhar; Hossein Salimnia; Michael J. Rybak; Keith S. Kaye

Highest Prevalence of Vancomycin-Resistant Staphylococcus aureus • Author(s): Kayoko Hayakawa, MD, PhD; Dror Marchaim, MD; Celine Vidaillac, PharmD, PhD; Paul Lephart, PhD; Jason M. Pogue, PharmD; Bharath Sunkara, MBBS, MPH; Harikrishna Kotra, MBBS; Asma Hasan, BS; Maryann Shango, BS; Yashwanth Yerramalla, MBBS; Adedayo M. Osunlana, MBBS; Teena Chopra, MD; Sorabh Dhar, MD; Hossein Salimnia, PhD; Michael J. Rybak, PharmD, MPH; Keith S. Kaye, MD, MPH Source: Infection Control and Hospital Epidemiology, Vol. 32, No. 9 (September 2011), pp. 922924 Published by: The University of Chicago Press on behalf of The Society for Healthcare Epidemiology of America Stable URL: http://www.jstor.org/stable/10.1086/661599 . Accessed: 17/05/2014 11:39


Antimicrobial Agents and Chemotherapy | 2010

In Vitro Activity of the New Multivalent Glycopeptide-Cephalosporin Antibiotic TD-1792 against Vancomycin-Nonsusceptible Staphylococcus Isolates

Kimberly D. Leuthner; Céline Vidaillac; Chrissy M. Cheung; Michael J. Rybak

ABSTRACT TD-1792 is a glycopeptide-cephalosporin heterodimer antibiotic with activity against a broad spectrum of Gram-positive pathogens that includes methicillin-susceptible and -resistant Staphylococcus aureus. The objective of the present study was to evaluate the in vitro activity of TD-1792 against a collection of clinical isolates of vancomycin-intermediate Staphylococcus spp. (VISS), heteroresistant VISS (hVISS), and vancomycin-resistant S. aureus (VRSA). The TD-1792, vancomycin, daptomycin, linezolid, and quinupristin-dalfopristin MICs and minimum bactericidal concentrations (MBCs) were determined for 50 VISS/hVISS isolates and 3 VRSA isolates. Time-kill experiments (TKs) were then performed over 24 h with two vancomycin-intermediate S. aureus strains and two VRSA strains, using each agent at multiples of the MIC. TD-1792 and daptomycin were also evaluated in the presence and absence of 50% human serum to determine the effects of the proteins on their activities. Most of the VISS/hVISS isolates were susceptible to all agents except vancomycin. TD-1792 exhibited the lowest MIC values (MIC90 = 0.125 μg/ml), followed by quinupristin-dalfopristin and daptomycin (MIC90 = 1 μg/ml) and then linezolid (MIC90 = 2 μg/ml). The presence of serum resulted in a 2- to 8-fold increase in the TD-1792 and daptomycin MIC values. In TKs, QD demonstrated bactericidal activity at multiples of the MIC that simulated therapeutic levels, whereas linezolid was only bacteriostatic. Both TD-1792 and daptomycin demonstrated rapid bactericidal activities against all isolates tested. The presence of proteins had only a minimal impact on the activity of TD-1792 in TKs. TD-1792 exhibited significant in vitro activity against multidrug-resistant Staphylococcus isolates and represents a promising candidate for the treatment of infections caused by Gram-positive organisms.

Collaboration


Dive into the Céline Vidaillac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald N. Jones

University of Iowa Hospitals and Clinics

View shared research outputs
Top Co-Authors

Avatar

Warren E. Rose

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Moreau

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge