Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cemal Cem Tasan is active.

Publication


Featured researches published by Cemal Cem Tasan.


Nature | 2016

Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off

Zhiming Li; Konda Gokuldoss Pradeep; Yun Deng; Dierk Raabe; Cemal Cem Tasan

Metals have been mankinds most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should thus usefully guide design in the near-infinite compositional space of high-entropy alloys.


Science | 2017

Bone-like crack resistance in hierarchical metastable nanolaminate steels

Motomichi Koyama; Zhao Zhang; Meimei Wang; Dirk Ponge; Dierk Raabe; Kaneaki Tsuzaki; Hiroshi Noguchi; Cemal Cem Tasan

Bone-inspired steel Load cycling of metal components leads to fatigue and ultimately failure through the propagation of cracks. Koyama et al. took inspiration from bone to develop a steel with a laminated substructure that arrests cracks. The resulting hierarchical material has much better fatigue resistance properties than other iron alloys. The strategy need not be limited to steel; other metal alloys should also benefit from this type of microstructural engineering. Science, this issue p. 1055 A multiphase nanolaminate microstructured steel shows greatly improved fatigue resistance. Fatigue failures create enormous risks for all engineered structures, as well as for human lives, motivating large safety factors in design and, thus, inefficient use of resources. Inspired by the excellent fracture toughness of bone, we explored the fatigue resistance in metastability-assisted multiphase steels. We show here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized. Our results reveal that tuning the interface structure, distribution, and phase stability to simultaneously activate multiple micromechanisms that resist crack propagation is key for the observed leap in mechanical response. The exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.


Scientific Reports | 2017

Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys

Zhiming Li; Cemal Cem Tasan; Hauke Springer; Baptiste Gault; Dierk Raabe

High-entropy alloys (HEAs) consisting of multiple principle elements provide an avenue for realizing exceptional mechanical, physical and chemical properties. We report a novel strategy for designing a new class of HEAs incorporating the additional interstitial element carbon. This results in joint activation of twinning- and transformation-induced plasticity (TWIP and TRIP) by tuning the matrix phase’s instability in a metastable TRIP-assisted dual-phase HEA. Besides TWIP and TRIP, such alloys benefit from massive substitutional and interstitial solid solution strengthening as well as from the composite effect associated with its dual-phase structure. Nanosize particle formation and grain size reduction are also utilized. The new interstitial TWIP-TRIP-HEA thus unifies all metallic strengthening mechanisms in one material, leading to twice the tensile strength compared to a single-phase HEA with similar composition, yet, at identical ductility.


Metallurgical and Materials Transactions A-physical Metallurgy and Materials Science | 2015

Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite

Meimei Wang; Cemal Cem Tasan; Motomichi Koyama; Dirk Ponge; Dierk Raabe

Partial reversion of interlath austenite nano-films is investigated as a potential remedy for hydrogen embrittlement susceptibility of martensitic steels. We conducted uniaxial tensile tests on hydrogen-free and pre-charged medium-Mn transformation-induced plasticity-maraging steels with different austenite film thicknesses. Mechanisms of crack propagation and microstructure interaction are quantitatively analyzed using electron channelling contrast imaging and electron backscatter diffraction, revealing a promising strategy to utilize austenite reversion for hydrogen-resistant martensitic steel design.


Nature Communications | 2017

Complexion-mediated martensitic phase transformation in Titanium

Jiali Zhang; Cemal Cem Tasan; Minjie Lai; Ann Christin Dippel; Dierk Raabe

The most efficient way to tune microstructures and mechanical properties of metallic alloys lies in designing and using athermal phase transformations. Examples are shape memory alloys and high strength steels, which together stand for 1,500 million tons annual production. In these materials, martensite formation and mechanical twinning are tuned via composition adjustment for realizing complex microstructures and beneficial mechanical properties. Here we report a new phase transformation that has the potential to widen the application window of Ti alloys, the most important structural material in aerospace design, by nanostructuring them via complexion-mediated transformation. This is a reversible martensitic transformation mechanism that leads to a final nanolaminate structure of α″ (orthorhombic) martensite bounded with planar complexions of athermal ω (a–ω, hexagonal). Both phases are crystallographically related to the parent β (BCC) matrix. As expected from a planar complexion, the a–ω is stable only at the hetero-interface.


Materials Science and Technology | 2017

Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation

Motomichi Koyama; Michael Rohwerder; Cemal Cem Tasan; Asif Bashir; Eiji Akiyama; Kenichi Takai; Dierk Raabe; Kaneaki Tsuzaki

ABSTRACT This paper gives an overview of recent progress in microstructure-specific hydrogen mapping techniques. The challenging nature of mapping hydrogen with high spatial resolution, i.e. at the scale of finest microstructural features, led to the development of various methodologies: thermal desorption spectrometry, silver decoration, the hydrogen microprint technique, secondary ion mass spectroscopy, atom probe tomography, neutron radiography, and the scanning Kelvin probe. These techniques have different characteristics regarding spatial and temporal resolution associated with microstructure-sensitive hydrogen detection. Employing these techniques in a site-specific manner together with other microstructure probing methods enables multi-scale, quantitative, three-dimensional, high spatial, and kinetic resolution hydrogen mapping, depending on the specific multi-probe approaches used. Here, we present a brief overview of the specific characteristics of each method and the progress resulting from their combined application to the field of hydrogen embrittlement. This paper is part of a thematic issue on Hydrogen in Metallic Alloys


Philosophical Magazine Letters | 2016

Hydrogen-assisted damage in austenite/martensite dual-phase steel

Motomichi Koyama; Cemal Cem Tasan; Tatsuya Nagashima; Eiji Akiyama; Dierk Raabe; Kaneaki Tsuzaki

Abstract For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy. Localized diffusible hydrogen in martensite causes cracking through two mechanisms: (1) interaction between {1 1 0}M localized slip and {1 1 2}M twin and (2) cracking of martensite–martensite grain interfaces. The former resulted in nanovoids along the {1 1 2}M twin. The coalescence of the nanovoids generated plate-like microvoids. The latter caused shear localization on the specific plane where the crack along the martensite/martensite boundary exists, which led to additional martensite/martensite boundary cracking.


Archive | 2016

Self-Healing Metals

Blazej Grabowski; Cemal Cem Tasan

Designing self-healing in metals is a challenging task. Self-healing concepts successfully applied in polymers cannot be directly transferred because of different energetics. This has detained the field of self-healing metals, as evidenced by absolute publication numbers. Yet, relative publication numbers indicate a rapidly increasing interest in recent years triggered by the potential economic impact of advanced metallic materials. This chapter reviews all currently available self-healing concepts in bulk metallic materials. We provide a classification into two conceptually distinct routes: (1) autonomous self-healing of nanovoids at the nanoscale, aiming at a prevention of large-scale damage and (2) non-autonomous self-healing of macrocracks by an external trigger such as heat. The general idea of each self-healing concept is comprehensibly introduced, relevant publications are reviewed, and the characteristics of the concepts are compared. Finally, we discuss current constraints and identify the most promising concepts.


Journal of Materials Science | 2015

Damage resistance in gum metal through cold work-induced microstructural heterogeneity

Jiali Zhang; Cemal Cem Tasan; Minjie Lai; Jian Zhang; Dierk Raabe

Cold-worked alloys exhibit high strength, but suffer from limited ductility. In contrast, Ti-based gum metal was reported to exhibit high strength combined with good ductility upon severe pre-straining. Motivated by this anomaly, we systematically studied the evolution of gum metal microstructure during severe cold working (swaging and rolling) and the resulting deformation and damage micro-mechanical mechanisms during follow-up tensile deformation. To this end, various experimental in situ and post-mortem methodologies are employed, including scanning electron microscopy imaging, high-resolution electron backscatter diffraction mapping and transmission electron microscopy. These observations reveal that intense grain refinement takes place through dislocation plasticity-dominated deformation banding upon cold working. The observed enhancement in crack blunting and failure resistance which prolongs the post-necking ductility of gum metal during follow-up tensile straining can be attributed to the deformation-induced development of local heterogeneities in texture and grain size.


Journal of Materials Science | 2015

Retardation of plastic instability via damage-enabled microstrain delocalization

Jpm Johan Hoefnagels; Cemal Cem Tasan; F Francesco Maresca; Fj Peters; V Varvara Kouznetsova

AbstractMulti-phase microstructures with high mechanical contrast phases are prone to microscopic damage mechanisms. For ferrite–martensite dual-phase steel, for example, damage mechanisms such as martensite cracking or martensite–ferrite decohesion are activated with deformation, and discussed often in literature in relation to their detrimental role in triggering early failure in specific dual-phase steel grades. However, both the micromechanical processes involved and their direct influence on the macroscopic behavior are quite complex, and a deeper understanding thereof requires systematic analyses. To this end, an experimental–theoretical approach is employed here, focusing on three model dual-phase steel microstructures each deformed in three different strain paths. The micromechanical role of the observed damage mechanisms is investigated in detail by in-situ scanning electron microscopy tests, quantitative damage analyses, and finite element simulations. The comparative analysis reveals the unforeseen conclusion that damage nucleation may have a beneficial mechanical effect in ideally designed dual-phase steel microstructures (with effective crack-arrest mechanisms) through microscopic strain delocalization.

Collaboration


Dive into the Cemal Cem Tasan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jpm Johan Hoefnagels

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mgd Marc Geers

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge