Cemil Göçmen
Çukurova University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cemil Göçmen.
European Journal of Pharmacology | 2000
Cemil Göçmen; Ata Secilmis; Eda Karabal Kumcu; Peyman Ertuğ; Serpil Önder; Atilla Dikmen; Firuz Baysal
We studied the effect of vitamin E and sodium selenate treatment on the neurogenic and endothelium-dependent relaxation of isolated corpus cavernosum obtained from streptozotocin-induced diabetic mice. Relaxant responses of corpus cavernosum precontracted by phenylephrine to electrical field stimulation and to acetylcholine were significantly decreased in diabetic mice. There was no significant difference between diabetic and non-diabetic groups for the relaxant response of corpus cavernosum to sodium nitroprusside and papaverine. Treatment with sodium selenate, but not vitamin E, partially prevented the impairment of the neurogenic relaxation, whereas both had a significant, partial restorative action on endothelial dysfunction in corpus cavernosum obtained from diabetic groups. Neither agent exhibited a significant action on the relaxant responses of corpus cavernosum obtained from non-diabetic mice. A decrease in the sensitivity of the neurogenic impairment to antioxidant action may develop more rapidly than that of endothelial dysfunction in streptozotocin-induced diabetic mice.
Urological Research | 1997
Cemil Göçmen; Peyman Uçar; Ergin Şingirik; Atilla Dikmen; Firuz Baysal
The relaxant effects of electrical field stimulation (EFS) and exogenously applied acetylcholine (ACh) or acidified NaNO2 (a-NaNO2) were investigated in the isolated mouse corpus cavernosum precontracted with phenylephrine hydrochloride (PE). Tetrodotoxin (TTX) blocked the relaxant effects of EFS completely, whereas it had no effect on the responses to ACh or a-NaNO2. Guanethidine and indomethacin failed to affect the electrically or ACh-induced relaxations. Atropine completely blocked the effect of ACh; however, it caused a slight reduction in the relaxation evoked by EFS.NG- Nitro-l-arginine (l-NOARG) reduced the effects of EFS and ACh significantly, but it was ineffective on the relaxations induced by a-NaNO2. The inhibitory action ofl-NOARG was partly restored byl-arginine, but not byd-arginine. Methylene blue (MB) and hydroxocobalamin (HC) exhibited significant inhibition on the relaxations evoked by EFS, ACh and a-NaNO2. Hydroquinone (HQ) reduced relaxation due to a-NaNO2, but did not affect that of EFS and ACh. Our findings suggest that EFS-induced relaxations of mouse cavernosal tissue are mediated by a transmitter which probably resembles an organic nitrate.
Pharmacology | 2003
Tufan Mert; Yasemin Güneş; Mustafa Güven; Ismail Gunay; Cemil Göçmen
We have used the sucrose gap method to measure the effects of drugs on the electrophysiological properties of rat sciatic nerves. The results showed that 4-aminopyridine produced a slight conduction block, prolonged the duration of action potential, enhanced the hyperpolarizing afterpotential, and elicited a hump that followed the action potential. In the presence of 4-aminopyridine, the impulse-blocking activity of lidocaine and tramadol was enhanced. Both lidocaine and tramadol effectively depressed the delayed depolarization generated by 4-aminopyridine. While tramadol decreased the activity-evoked hyperpolarizing afterpotentials, lidocaine completely removed them. These findings indicate that lidocaine may be more effective in blocking the Na+ channels than tramadol. Tramadol may be more effective on the delayed rectifier K+ channels than lidocaine.
Neuroscience Letters | 2004
Tufan Mert; Yusuf Kenan Daglioglu; Ismail Gunay; Cemil Göçmen
The conduction of action potential in peripheral nerves requires the coordinated opening and closing of Na(+) and K(+) channels. In the present study, we used the sucrose-gap recording technique to determine the electrophysiological changes of the regenerating nerves after sciatic nerve injury by using 4-aminopyridine (4-AP) and tetraethylammonium (TEA), and lidocaine. 4-AP enhanced the amplitude and duration of the compound action potentials (CAPs) of regenerating sciatic nerve 15 days post crush (15 dpc), and elicited delayed depolarizations (Del-dep) in 38 dpc and intact groups. Hyperpolarizing afterpotentials elicited by 4-AP were completely removed by TEA in both 15 and 38 dpc. Lidocaine effectively blocked the CAP amplitude. This blockage was more pronounced in 15 dpc than 38 dpc. This agent also exhibited a partial blockage on the Del-dep amplitude. These results may indicate that the changes in the activities of 4-AP- and TEA-sensitive K(+) channels and slow Na(+) channels may play critical roles in nerve excitability and conduction.
European Journal of Pharmacology | 1998
Cemil Göçmen; Ata Secilmis; Peyman Uçar; Yusuf Karataş; Serpil Önder; Atilla Dikmen; Firuz Baysal
Relaxations induced by electrical field stimulation and acetylcholine were compared with those induced by acidified sodium nitrite, sodium nitroprusside, S-nitrosoglutathione and S-nitroso-N-acetyl-D,L-penicillamine in the mouse corpus cavernosum precontracted with phenylephrine. NG-nitro-L-arginine inhibited electrical field stimulation- or acetylcholine-induced relaxation, but was ineffective on relaxations caused by the other stimuli. Hydroquinone and pyrogallol had no inhibitory action on the relaxations caused by any stimulus except acidified sodium nitrite. Incubation of the tissue with diethyldithiocarbamic acid significantly inhibited the relaxations induced by all stimuli except papaverine. In the tissues pre-treated with diethyldithiocarbamic acid, superoxide dismutase, hydroquinone and pyrogallol failed to yield restore or further inhibit the relaxations in response to electrical field stimulation or acetylcholine. LY 83583 (6-anilino-5,8-quinolinedione) and hydroxocobalamin clearly inhibited the relaxant responses to electrical field stimulation, acetylcholine, S-nitrosoglutathione and acidified sodium nitrite whereas there was significant enhancement of the relaxation produced by S-nitroso-N-acetyl-D,L-penicillamine. These findings suggest that the relaxant factor released from non-adrenergic non-cholinergic nerves or endothelial cells in mouse cavernosal tissue may be a superoxide anion-resistant nitric oxide-containing molecule and that S-nitrosoglutathione rather than S-nitroso-N-acetyl-D,L-penicillamine could be a suitable candidate for this.
European Journal of Pharmacology | 2000
Cemil Göçmen; H.Sinem Göktürk; Peyman Uçar Ertuǧ; Serpil Önder; Atilla Dikmen; Firuz Baysal
The effects of neocuproine and bathocuproine, Cu(I) and Cu(II) chelators, respectively, were studied on relaxations in response to electrical field stimulation, acetylcholine, S-nitrosoglutathione, acidified sodium nitrite and sodium nitroprusside in the mouse corpus cavernosum precontracted with phenylephrine. Neocuproine significantly inhibited relaxations induced by electrical field stimulation, acetylcholine and S-nitrosoglutathione, but not by acidified sodium nitrite and sodium nitroprusside. The pre-prepared neocuproine-Cu(I) complex was ineffective on the responses. The discrepancy between the shape of relaxations in response to electrical field stimulation or to acetylcholine and S-nitrosoglutathione was abolished by adding CuCl(2) into the bathing medium. The copper action was blocked by neocuproine but not by bathocuproine. However, the pre-prepared bathocuproine-Cu(II) complex did not accelerate the relaxations affected by CuCl(2). These findings suggest that a Cu(I)-dependent mechanism may play a role in the relaxation induced by the endogenous relaxant factor as well as by S-nitrosoglutathione in mouse cavernosal tissue.
European Journal of Pharmacology | 2008
Hacer Sinem Büyüknacar; Eda Karabal Kumcu; Cemil Göçmen; Serpil Önder
Cyclophosphamide induces a severe haemorrhagic cystitis characterized by bladder overactivity. The study was conducted to examine effects of a phosphodiesterase 4 (PDE4) inhibitor rolipram on bladder overactivity in rats with cyclophosphamide treatment. 42 female Wistar rats were used. 30 rats received a single i.p. injection of cyclophosphamide, and after 72 h, bladder function was evaluated by (1) in vitro preparations of whole bladders and (2) cystometry with continuous saline infusion under urethane anesthesia. Cyclophosphamide-treatment dramatically potentiated the basal spontaneous contractions of isolated whole bladders compared to control rats. Atropine, guanethidine or suramin was ineffective on the spontaneous contractions whereas nifedipine completely abolished. Rolipram (5-80 microM) induced a significant concentration-dependent decrease on the amplitude, frequency (contractions/min) and area under the curve of spontaneous contractions. Carbachol elicited phasic contractions superimposed on a tonic contraction. Rolipram caused a relaxation on the tonic contraction whereas it could not affect the phasic contractions induced by carbachol. In anesthetized rats, during continuous infusion cystometry, intercontraction interval was significantly shorter in cyclophosphamide-injected rats than in control rats. Rolipram at 5-40 microM has no significant effect on the intercontraction interval and contraction pressure while it significantly decreased pressure threshold. At 80 microM, it significantly decreased the intercontraction interval and contraction pressure. In conclusion, PDE4 inhibitor rolipram caused a significant decrease on the amplitude, frequency and area under the curve of basal spontaneous contractions in cyclophosphamide-treated rats, at doses that have no effect on the carbachol-induced phasic contractions and cystometric parameters. PDE4 inhibitors may be considered as an attractive strategy for the treatment of cyclophosphamide-induced bladder overactivity.
Toxicology Letters | 2000
Cemil Göçmen; Eda Karabal Kumcu; Ata Secilmis; Peyman Uçar; Atilla Dikmen; Firuz Baysal
We investigated whether Cd2+ intake (in drinking water, 15 ppm) for 30 days can affect the nitrergic relaxations of the mouse corpus cavernosum (CC) and whether Zn2+ (25 mg kg(-1) via a stomach tube at 48-h intervals) or sodium selenate (8 microg kg(-1) day(-1) intraperitoneally) has a restorative action on the impairment in the response. Relaxant responses of the CC obtained from Cd2+-treated mice to electrical field stimulation (neurogenic) or acetylcholine (endothelium dependent) were significantly inhibited. A partial restoration was observed in the nitrergic relaxation of the CC obtained from Zn2+- or sodium selenate-co-treated animals. Neither agent exhibited any significant action on the responses of the tissue from control mice. There was no significant difference between Cd2+-treated and control mice in respect of the relaxation amplitude induced by sodium nitroprusside or papaverine. These results suggest that Cd2+ intake may impair the nitrergic relaxation of the mouse CC, and, co-treatment with Zn2+ or sodium selenate may partially improve the nitrergic mechanisms in the tissue.
Journal of Pharmacology and Experimental Therapeutics | 2010
Hacer Sinem Büyüknacar; Cemil Göçmen; William C. de Groat; Eda Karabal Kumcu; Hsi-Yang Wu; Serpil Önder
The present study was undertaken to compare the effects of the thiol reagents l-cysteine and (diazene dicarboxylic acid bis 5N,N-dimethylamide) diamide on contractile activity of neonatal and adult rat bladders. In vitro whole-bladder preparations from Wistar rats were used to study the modulation of spontaneous bladder contractions by thiol reagents. After blocking cholinergic and adrenergic transmission with atropine and guanethidine, l-cysteine facilitated spontaneous bladder contractions in neonatal rat bladders. The effect of l-cysteine was suppressed by diamide. Diamide alone did not change basal activity of the neonatal rat bladder. The facilitatory effects of l-cysteine were reduced by the L-type Ca2+ channel-blocking agent nifedipine and the calcium-activated K+ channel opener NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one]. ATP or suramin, a purinergic receptor antagonist, significantly inhibited the effect of l-cysteine in neonatal bladders, whereas the nitric-oxide synthase inhibitor Nω-nitro-l-arginine was ineffective. l-cysteine did not elicit any detectable effects in the adult rat bladder; whereas diamide caused a large-amplitude sustained tonic contraction. The contraction induced by diamide in adult bladder did not occur when the preparation was pretreated with l-cysteine. Also, l-Cysteine administered during the diamide-evoked contraction completely inhibited the contraction to diamide. In conclusion, our results suggest that l-cysteine has markedly different effects in isolated whole-bladder preparations from neonatal and adult rats. Thus thiol-sensitive mechanisms may modulate contractility by regulation of Ca2+ and K+ channels and/or purinergic transmission in the neonatal bladder. The effects of l-cysteine and diamide were reversed in adult bladders, indicating that the regulation of bladder contractility by thiols is markedly altered during postnatal development.
Phytomedicine | 2012
Nadire Eser; Cemil Göçmen; Şeyda Erdoğan; Hacer Sinem Büyüknacar; Eda Karabal Kumcu; Arbil Acikalin; Serpil Önder
The purpose of this study was to investigate the effects of silymarin, a phytotherapeutic agent, on bladder overactivity in a cyclophosphamide (CYP)-induced cystitis rat model. Female Wistar Albino rats received a single intraperitoneal injection of CYP (150 mg/kg) or saline and after 72 h, bladder function was evaluated by in vitro preparations of whole bladders and cystometry with continuous saline infusion under urethane anesthesia. Silymarin or a vehicle was orally given for 7 days in rats. CYP was injected on the 5th day of silymarin or vehicle treatment and then the animals were killed on the 8th day. CYP-treatment dramatically potentiated the basal spontaneous contractions of isolated whole bladders compared to control rats. In anesthetized rats, during continuous infusion cystometry, intercontraction interval (ICI) was significantly shorter, but bladder voiding pressure was not significantly changed in CYP-injected rats compared to control rats. In the CYP-injected group, silymarin treatment significantly decreased the amplitude, frequency (contractions/min) and area under the curve of spontaneous contractions, but failed to change carbachol-induced contraction in isolated whole bladder. Also, silymarin treatment significantly increased the ICI in comparison to the vehicle treatment. In the saline-injected group, no significant changes in the bladder function were observed between the silymarin and vehicle-treated groups. Histopathological examination showed that CYP-induced bladder inflammation tended to be lower in the silymarin+CYP-treated group. In conclusion, the oral administration of silymarin suppressed CYP-induced bladder overactivity. Silymarin may be considered as an attractive treatment for CYP-induced bladder overactivity.