Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cephise Cacho is active.

Publication


Featured researches published by Cephise Cacho.


Nature Materials | 2013

Snapshots of non-equilibrium Dirac carrier distributions in graphene

Isabella Gierz; Jesse C. Petersen; Matteo Mitrano; Cephise Cacho; I. C. Edmond Turcu; E. Springate; Alexander Stöhr; Axel Kohler; U. Starke; Andrea Cavalleri

The optical properties of graphene are made unique by the linear band structure and the vanishing density of states at the Dirac point. It has been proposed that even in the absence of a bandgap, a relaxation bottleneck at the Dirac point may allow for population inversion and lasing at arbitrarily long wavelengths. Furthermore, efficient carrier multiplication by impact ionization has been discussed in the context of light harvesting applications. However, all of these effects are difficult to test quantitatively by measuring the transient optical properties alone, as these only indirectly reflect the energy- and momentum-dependent carrier distributions. Here, we use time- and angle-resolved photoemission spectroscopy with femtosecond extreme-ultraviolet pulses to directly probe the non-equilibrium response of Dirac electrons near the K-point of the Brillouin zone. In lightly hole-doped epitaxial graphene samples, we explore excitation in the mid- and near-infrared, both below and above the minimum photon energy for direct interband transitions. Whereas excitation in the mid-infrared results only in heating of the equilibrium carrier distribution, interband excitations give rise to population inversion, suggesting that terahertz lasing may be possible. However, in neither excitation regime do we find any indication of carrier multiplication, questioning the applicability of graphene for light harvesting.


Physical Review Letters | 2013

Direct view of hot carrier dynamics in graphene.

Jens Christian Johannsen; Søren Ulstrup; Federico Cilento; A. Crepaldi; M. Zacchigna; Cephise Cacho; I. C. Edmond Turcu; E. Springate; Felix Fromm; Christian Raidel; Thomas Seyller; F. Parmigiani; M. Grioni; Philip Hofmann

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).


Physical Review Letters | 2011

Clocking the Melting Transition of Charge and Lattice Order in 1T−TaS2 with Ultrafast Extreme-Ultraviolet Angle-Resolved Photoemission Spectroscopy

Jesse C. Petersen; S. Kaiser; Nicky Dean; Alberto Simoncig; Haiyun Liu; Adrian L. Cavalieri; Cephise Cacho; I. C. E. Turcu; E. Springate; Fabio Frassetto; Luca Poletto; S. S. Dhesi; H. Berger; Andrea Cavalleri

Charge density waves (CDWs) underpin the electronic properties of many complex materials. Near-equilibrium CDW order is linearly coupled to a periodic, atomic-structural distortion, and the dynamics is understood in terms of amplitude and phase modes. However, at the shortest timescales lattice and charge order may become de-coupled, highlighting the electronic nature of this many-body broken symmetry ground state. Using time and angle resolved photoemission spectroscopy with sub-30-fs XUV pulses, we have mapped the time- and momentum-dependent electronic structure in photo-stimulated 1T-TaS2, a prototypical two-dimensional charge density wave compound. We find that CDW order, observed as a splitting of the uppermost electronic bands at the Brillouin zone boundary, melts well before relaxation of the underlying structural distortion. Decoupled charge and lattice modulations challenge the view of Fermi Surface nesting as a driving force for charge density wave formation in 1T-TaS2.


Optics Express | 2011

Single-grating monochromator for extreme-ultraviolet ultrashort pulses

Fabio Frassetto; Cephise Cacho; Chris Froud; I.C. Edmund Turcu; P. Villoresi; W. A. Bryan; E. Springate; Luca Poletto

Extreme-ultraviolet high-order-harmonic pulses with 1.6·10(7) photons/pulse at 32.5 eV have been separated from multiple harmonic orders by a time-preserving monochromator using a single grating in the off-plane mount. This grating geometry gives minimum temporal broadening and high efficiency. The pulse duration of the monochromatized harmonic pulses has been measured to be in the range 20 to 30 fs when the harmonic process is driven by an intense 30 fs near-infrared pulse. The harmonic photon energy is tunable between 12 and 120 eV. The instrument is used in the monochromatized branch of the Artemis beamline at the Central Laser Facility (UK) for applications in ultrafast electron spectroscopy.


Physical Review Letters | 2014

Ultrafast Dynamics of Massive Dirac Fermions in Bilayer Graphene

Søren Ulstrup; Jens Christian Johannsen; Federico Cilento; Jill A. Miwa; A. Crepaldi; M. Zacchigna; Cephise Cacho; Richard T. Chapman; E. Springate; Samir Mammadov; Felix Fromm; Christian Raidel; Thomas Seyller; F. Parmigiani; M. Grioni; P. D. C. King; Philip Hofmann

Bilayer graphene is a highly promising material for electronic and optoelectronic applications since it is supporting massive Dirac fermions with a tunable band gap. However, no consistent picture of the gaps effect on the optical and transport behavior has emerged so far, and it has been proposed that the insulating nature of the gap could be compromised by unavoidable structural defects, by topological in-gap states, or that the electronic structure could be altogether changed by many-body effects. Here, we directly follow the excited carriers in bilayer graphene on a femtosecond time scale, using ultrafast time- and angle-resolved photoemission. We find a behavior consistent with a single-particle band gap. Compared to monolayer graphene, the existence of this band gap leads to an increased carrier lifetime in the minimum of the lowest conduction band. This is in sharp contrast to the second substate of the conduction band, in which the excited electrons decay through fast, phonon-assisted interband transitions.


Nano Letters | 2015

Observation of Ultrafast Free Carrier Dynamics in Single Layer MoS2

Antonija Grubišić Čabo; Jill A. Miwa; Signe S. Grønborg; J. M. Riley; Jens Christian Johannsen; Cephise Cacho; Oliver Alexander; Richard T. Chapman; E. Springate; M. Grioni; Jeppe V. Lauritsen; P. D. C. King; Philip Hofmann; Søren Ulstrup

The dynamics of excited electrons and holes in single layer (SL) MoS2 have so far been difficult to disentangle from the excitons that dominate the optical response of this material. Here, we use time- and angle-resolved photoemission spectroscopy for a SL of MoS2 on a metallic substrate to directly measure the excited free carriers. This allows us to ascertain a direct quasiparticle band gap of 1.95 eV and determine an ultrafast (50 fs) extraction of excited free carriers via the metal in contact with the SL MoS2. This process is of key importance for optoelectronic applications that rely on separated free carriers rather than excitons.


Nano Letters | 2015

Tunable Carrier Multiplication and Cooling in Graphene

Jens Christian Johannsen; Søren Ulstrup; A. Crepaldi; Federico Cilento; M. Zacchigna; Jill A. Miwa; Cephise Cacho; Richard T. Chapman; E. Springate; Felix Fromm; Christian Raidel; Thomas Seyller; P. D. C. King; F. Parmigiani; M. Grioni; Philip Hofmann

Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly (n-)doped graphene, we observe larger carrier multiplication factors (>3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less (p-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphenes dynamical response to a photoexcitation.


Physical Chemistry Chemical Physics | 2012

LIAD-fs scheme for studies of ultrafast laser interactions with gas phase biomolecules.

C. R. Calvert; Louise Belshaw; Martin J. Duffy; Orla Kelly; Raymond King; A. G. Smyth; Thomas J. Kelly; John T. Costello; David J. Timson; W. A. Bryan; T. Kierspel; P. Rice; I. C. E. Turcu; Cephise Cacho; E. Springate; I. D. Williams; Jason B. Greenwood

Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities >10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.


ACS Nano | 2016

Ultrafast Band Structure Control of a Two-Dimensional Heterostructure

Søren Ulstrup; Antonija Grubišić Čabo; Jill A. Miwa; J. M. Riley; Signe S. Grønborg; Jens Christian Johannsen; Cephise Cacho; Oliver Alexander; Richard T. Chapman; E. Springate; Mario Bianchi; Maciej Dendzik; Jeppe V. Lauritsen; Philip David King; Philip Hofmann

The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure.


Physical Review Letters | 2016

Generation and evolution of spin-, valley- and layer-polarized excited carriers in inversion-symmetric WSe2

Roman Bertoni; Christopher Nicholson; Lutz Waldecker; Hannes Hübener; Claude Monney; Umberto De Giovannini; Michele Puppin; M. Hoesch; E. Springate; Richard T. Chapman; Cephise Cacho; Martin Wolf; Angel Rubio; Ralph Ernstorfer

We report the spin-selective optical excitation of carriers in inversion-symmetric bulk samples of the transition metal dichalcogenide (TMDC) WSe_{2}. Employing time- and angle-resolved photoelectron spectroscopy (trARPES) and complementary time-dependent density functional theory (TDDFT), we observe spin-, valley-, and layer-polarized excited state populations upon excitation with circularly polarized pump pulses, followed by ultrafast (<100  fs) scattering of carriers towards the global minimum of the conduction band. TDDFT reveals the character of the conduction band, into which electrons are initially excited, to be two-dimensional and localized within individual layers, whereas at the minimum of the conduction band, states have a three-dimensional character, facilitating interlayer charge transfer. These results establish the optical control of coupled spin-, valley-, and layer-polarized states in centrosymmetric materials with locally broken symmetries and suggest the suitability of TMDC multilayer and heterostructure materials for valleytronic and spintronic device concepts.

Collaboration


Dive into the Cephise Cacho's collaboration.

Top Co-Authors

Avatar

E. Springate

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard T. Chapman

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. C. E. Turcu

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Grioni

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge