Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where César Augusto F. de Oliveira is active.

Publication


Featured researches published by César Augusto F. de Oliveira.


Nature Chemical Biology | 2012

A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

Luz Irina A. Calderón Villalobos; Sarah Lee; César Augusto F. de Oliveira; Anthony Ivetac; Wolfgang Brandt; Lynne Armitage; Laura B. Sheard; Xu Tan; Geraint Parry; Haibin Mao; Ning Zheng; Richard M. Napier; Stefan Kepinski; Mark Estelle

The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding to the F-box protein TIR1 and promotes the degradation of the Aux/IAA transcriptional repressors. Here, we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity appears to be largely determined by the Aux/IAA. As there are 6 TIR1/AFBs and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin sensing properties. We also demonstrate that the AFB5-Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire

David A. Ostrov; Barry J. Grant; Yuri A. Pompeu; John Sidney; Mikkel Harndahl; Scott Southwood; Carla Oseroff; Shun Lu; Jean Jakoncic; César Augusto F. de Oliveira; Lun Yang; Hu Mei; Leming Shi; Jeffrey Shabanowitz; A. Michelle English; Amanda Wriston; Andrew Lucas; E. Phillips; S. Mallal; Howard M. Grey; Alessandro Sette; Donald F. Hunt; Søren Buus; Bjoern Peters

Idiosyncratic adverse drug reactions are unpredictable, dose-independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkages between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8+ T cells that required HLA-B*57:01 molecules for their function; however, the mechanism by which abacavir induces this pathologic T-cell response remains unclear. Here we show that abacavir can bind within the F pocket of the peptide-binding groove of HLA-B*57:01, thereby altering its specificity. This provides an explanation for HLA-linked idiosyncratic adverse drug reactions, namely that drugs can alter the repertoire of self-peptides presented to T cells, thus causing the equivalent of an alloreactive T-cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir and that were recognized by T cells of hypersensitive patients. The assays that we have established can be applied to test additional compounds with suspected HLA-linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA-linked hypersensitivities, and guide the development of safer drugs.


Journal of Chemical Theory and Computation | 2012

Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics

Levi C. T. Pierce; Romelia Salomon-Ferrer; César Augusto F. de Oliveira; J. Andrew McCammon; Ross C. Walker

In this work, we critically assess the ability of the all-atom enhanced sampling method accelerated molecular dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale. We combine aMD with the inherent power of graphics processor units (GPUs) and apply the implementation to the bovine pancreatic trypsin inhibitor (BPTI). A 500 ns aMD simulation is compared to a previous millisecond unbiased brute force MD simulation carried out on BPTI, showing that the same conformational space is sampled by both approaches. To our knowledge, this represents the first implementation of aMD on GPUs and also the longest aMD simulation of a biomolecule run to date. Our implementation is available to the community in the latest release of the Amber software suite (v12), providing routine access to millisecond events sampled from dynamics simulations using off the shelf hardware.


Journal of Chemical Physics | 2007

Sampling of slow diffusive conformational transitions with accelerated molecular dynamics

Donald Hamelberg; César Augusto F. de Oliveira; J. Andrew McCammon

Slow diffusive conformational transitions play key functional roles in biomolecular systems. Our ability to sample these motions with molecular dynamics simulation in explicit solvent is limited by the slow diffusion of the solvent molecules around the biomolecules. Previously, we proposed an accelerated molecular dynamics method that has been shown to efficiently sample the torsional degrees of freedom of biomolecules beyond the millisecond timescale. However, in our previous approach, large-amplitude displacements of biomolecules are still slowed by the diffusion of the solvent. Here we present a unified approach of efficiently sampling both the torsional degrees of freedom and the diffusive motions concurrently. We show that this approach samples the configuration space more efficiently than normal molecular dynamics and that ensemble averages converge faster to the correct values.


Journal of Molecular Graphics & Modelling | 2011

POVME: An algorithm for measuring binding-pocket volumes

Jacob D. Durrant; César Augusto F. de Oliveira; J. Andrew McCammon

Researchers engaged in computer-aided drug design often wish to measure the volume of a ligand-binding pocket in order to predict pharmacology. We have recently developed a simple algorithm, called POVME (POcket Volume MEasurer), for this purpose. POVME is Python implemented, fast, and freely available. To demonstrate its utility, we use the new algorithm to study three members of the matrix-metalloproteinase family of proteins. Despite the structural similarity of these proteins, differences in binding-pocket dynamics are easily identified.


Journal of the American Chemical Society | 2010

From Sensors to Silencers: Quinoline- and Benzimidazole-Sulfonamides as Inhibitors for Zinc Proteases

Matthieu Rouffet; César Augusto F. de Oliveira; Yael Udi; Arpita Agrawal; Irit Sagi; J. Andrew McCammon; Seth M. Cohen

Derived from the extensive work in the area of small molecule zinc(II) ion sensors, chelating fragment libraries of quinoline- and benzimidazole-sulfonamides have been prepared and screened against several different zinc(II)-dependent matrix metalloproteinases (MMPs). The fragments show impressive inhibition of these metalloenzymes and preferences for different MMPs based on the nature of the chelating group. The findings show that focused chelator libraries are a powerful strategy for the discovery of lead fragments for metalloprotein inhibition.


Journal of Chemical Theory and Computation | 2010

Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics

Sarah Williams; César Augusto F. de Oliveira; J. Andrew McCammon

An extension of the constant pH method originally implemented by Mongan et al. (J. Comput. Chem.2004, 25, 2038−2048) is proposed in this study. This adapted version of the method couples the constant pH methodology with the enhanced sampling technique of accelerated molecular dynamics, in an attempt to overcome the sampling issues encountered with current standard constant pH molecular dynamics methods. Although good results were reported by Mongan et al. on application of the standard method to the hen egg-white lysozyme (HEWL) system, residues which possess strong interactions with neighboring groups tend to converge slowly, resulting in the reported inconsistencies for predicted pKa values, as highlighted by the authors. The application of the coupled method described in this study to the HEWL system displays improvements over the standard version of the method, with the improved sampling leading to faster convergence and producing pKa values in closer agreement to those obtained experimentally for the more slowly converging residues.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Antibacterial drug leads targeting isoprenoid biosynthesis.

Wei Zhu; Yonghui Zhang; William Sinko; Mary E. Hensler; Joshua Olson; Katie J. Molohon; Steffen Lindert; Rong Cao; Kai Li; Ke Wang; Yang Wang; Yi Liang Liu; Anna Sankovsky; César Augusto F. de Oliveira; Douglas A. Mitchell; Victor Nizet; J. Andrew McCammon; Eric Oldfield

With the rise in resistance to antibiotics such as methicillin, there is a need for new drugs. We report here the discovery and X-ray crystallographic structures of 10 chemically diverse compounds (benzoic, diketo, and phosphonic acids, as well as a bisamidine and a bisamine) that inhibit bacterial undecaprenyl diphosphate synthase, an essential enzyme involved in cell wall biosynthesis. The inhibitors bind to one or more of the four undecaprenyl diphosphate synthase inhibitor binding sites identified previously, with the most active leads binding to site 4, outside the catalytic center. The most potent leads are active against Staphylococcus aureus [minimal inhibitory concentration (MIC)90 ∼0.25 µg/mL], and one potently synergizes with methicillin (fractional inhibitory concentration index = 0.25) and is protective in a mouse infection model. These results provide numerous leads for antibacterial development and open up the possibility of restoring sensitivity to drugs such as methicillin, using combination therapies.


Journal of Chemical Physics | 2007

Estimating kinetic rates from accelerated molecular dynamics simulations: alanine dipeptide in explicit solvent as a case study.

César Augusto F. de Oliveira; Donald Hamelberg; J. Andrew McCammon

Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling methods have been proposed to address this issue, including the accelerated molecular dynamics method. In this work, we study the extent of sampling of the phi/psi space of alanine dipeptide in explicit water using accelerated molecular dynamics and present a framework to recover the correct kinetic rate constant for the helix to beta-strand transition. We show that the accelerated MD can drastically enhance the sampling of the phi/psi conformational phase space when compared to normal MD. In addition, the free energy density plots of the phi/psi space show that all minima regions are accurately sampled and the canonical distribution is recovered. Moreover, the kinetic rate constant for the helix to beta-strand transition is accurately estimated from these simulations by relating the diffusion coefficient to the local energetic roughness of the energy landscape. Surprisingly, even for such a low barrier transition, it is difficult to obtain enough transitions to accurately estimate the rate constant when one uses normal MD.


Journal of Chemical Theory and Computation | 2011

Enhanced Lipid Diffusion and Mixing in Accelerated Molecular Dynamics.

Yi Wang; Phineus R. L. Markwick; César Augusto F. de Oliveira; J. Andrew McCammon

Accelerated molecular dynamics (aMD) is an enhanced sampling technique that expedites conformational space sampling by reducing the barriers separating various low-energy states of a system. Here, we present the first application of the aMD method on lipid membranes. Altogether, ∼1.5 μs simulations were performed on three systems: a pure POPC bilayer, a pure DMPC bilayer, and a mixed POPC:DMPC bilayer. Overall, the aMD simulations are found to produce significant speedup in trans–gauche isomerization and lipid lateral diffusion versus those in conventional MD (cMD) simulations. Further comparison of a 70-ns aMD run and a 300-ns cMD run of the mixed POPC:DMPC bilayer shows that the two simulations yield similar lipid mixing behaviors, with aMD generating a 2–3-fold speedup compared to cMD. Our results demonstrate that the aMD method is an efficient approach for the study of bilayer structural and dynamic properties. On the basis of simulations of the three bilayer systems, we also discuss the impact of aMD parameters on various lipid properties, which can be used as a guideline for future aMD simulations of membrane systems.

Collaboration


Dive into the César Augusto F. de Oliveira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Sinko

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Williams

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth M. Cohen

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge