Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cesar Cavinato Cal Abad is active.

Publication


Featured researches published by Cesar Cavinato Cal Abad.


Journal of Sports Sciences | 2015

Half-squat or jump squat training under optimum power load conditions to counteract power and speed decrements in Brazilian elite soccer players during the preseason

Irineu Loturco; Lucas A. Pereira; Ronaldo Kobal; Vinicius Zanetti; Saulo Gil; Katia Kitamura; Cesar Cavinato Cal Abad; Fábio Yuzo Nakamura

Abstract The purpose of this study was to test which specific type of exercise (i.e., jump squat (JS) or half-squat (HS)) is more effective at maintaining speed and power abilities throughout a preseason in soccer players. Twenty-three male soccer players were randomly allocated into two groups: JS and HS. The mean propulsive power, vertical jumping ability, and sprinting performance were evaluated before and after 4 weeks of a preseason period. The optimum power loads for the JS and HS exercises were assessed and were used as load-references. The soccer players performed 10 power oriented training sessions in total. Both JS and HS maintained power in JS and speed abilities (P > 0.05, for main effects and interaction effect) as indicated by ANCOVA. Both groups demonstrated reduced power during HS (ES = −0.76 vs. −0.78, for JS and HS, respectively); both groups improved acceleration (ACC) from 5 to 10 m (ES = 0.52). JS was more effective at reducing the ACC decrements over 0–5 m (ES = −0.38 vs. −0.58, for JS and HS, respectively). The HS group increased squat jump height (ES = 0.76 vs. 0.11, for HS and JS, respectively). In summary, JS is more effective in reducing the ACC capacity over very short sprints while HS is more effective in improving squat jump performance. Both strategies improve ACC over longer distances. New training strategies should be implemented/developed to avoid concurrent training effects between power and endurance adaptations during professional soccer preseasons.


Journal of Strength and Conditioning Research | 2011

Combination of General and Specific Warm-Ups Improves Leg-Press One Repetition Maximum Compared With Specific Warm-Up in Trained Individuals

Cesar Cavinato Cal Abad; Marcos L. Prado; Carlos Ugrinowitsch; Valmor Tricoli; Renato Barroso

Abad, CCC, Prado, ML, Ugrinowitsch, C, Tricoli, V, and Barroso, R. Combination of general and specific warm-ups improves leg-press one repetition maximum compared with specific warm-up in trained individuals. J Strength Cond Res 25(8): 2242-2245, 2011—Accurate assessment of muscular strength is critical for exercise prescription and functional evaluation. The warm-up protocol may affect the precision of the 1 repetition maximum (1RM) test. Testing guidelines recommend performing both general and specific warm-ups before strength tests. The general warm-up intends to raise muscle temperature, whereas the specific warm-up aims to increase neuromuscular activation. Although there is scientific evidence for performing the specific warm-up, the effects of general warm-up on strength tests are still unclear. The purpose of this study was to investigate whether the combination of a general with a specific warm-up (G + SWU) protocol would improve leg press 1RM values compared with a specific warm-up (SWU) protocol. Thirteen participants were tested for leg-press 1RM under 2 warm-up conditions. In the first condition, participants performed the SWU only, which was composed of 1 set of 8 repetitions at approximately 50% of the estimated 1RM followed by another set of 3 repetitions at 70% of the estimated 1RM. In the second condition (G + SWU), participants performed the 1RM test after a 20-minute general warm-up on a stationary bicycle at 60% of HRmax and the same specific warm-up as in the SWU. Values of 1RM in SWU and in G + SWU were compared by a paired t-test, and significance level was set at p ≤ 0.05. Strength values were on average 8.4% (p = 0.002) higher in the G + SWU compared with the SWU. These results suggest that the G + SWU induced temperature-dependent neuromuscular adjustments that increased muscle force production capacity. Therefore, these results support the recommendations of the testing guidelines to perform a moderate intensity general warm-up in addition to the specific warm-up before maximum strength assessments.


Journal of Sports Sciences | 2015

Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players

Irineu Loturco; Lucas A. Pereira; Ronaldo Kobal; Vinicius Zanetti; Katia Kitamura; Cesar Cavinato Cal Abad; Fábio Yuzo Nakamura

Abstract The aim of this study was to investigate the effects of adding vertical/horizontal plyometrics to the soccer training routine on jumping and sprinting performance in U-20 soccer players. The vertical jumping group (VJG) performed countermovement jumps (CMJ), while the horizontal jumping group (HJG) executed horizontal jumps (HJ). Training interventions comprised 11 sessions, with volume varying between 32 and 60 jumps per session. The analysis of covariance revealed that CMJ height and peak force improved only in the VJG, and that HJ distance and peak force improved in both groups. Velocity in 20 m (VEL 20 m) did not improve in either group; however, velocity in 10 m (VEL 10 m) presented a moderate positive effect size (ES = 0.66) in the HJG, while the ES was large (1.63) for improvement in the 10–20 m acceleration in the VJG, and it was largely negative (−1.09) in the HJG. The transference effect coefficients (calculated by the equation: TEC = result gain (ES) in untrained exercise/result gain (ES) in trained exercise) between CMJ and VEL 20 m and ACC 10–20 m were 1.31 and 2.75, respectively. The TEC between HJ and VEL 10 m, VEL 20 m and ACC 0–10 m were 0.44, 0.17 and 0.44, respectively. The results presented herein indicate that the plyometric training-axis is decisive in determining neuromechanical training responses in high-level soccer players.


PLOS ONE | 2015

Determining the Optimum Power Load in Jump Squat Using the Mean Propulsive Velocity.

Irineu Loturco; Fábio Yuzo Nakamura; Valmor Tricoli; Ronaldo Kobal; Cesar Cavinato Cal Abad; Katia Kitamura; Carlos Ugrinowitsch; Saulo Gil; Lucas A. Pereira; Juan José González-Badillo

The jump squat is one of the exercises most frequently used to improve lower body power production, which influences sports performance. However, the traditional determination of the specific workload at which power production is maximized (i.e., optimum power load) is time-consuming and requires one-repetition maximum tests. Therefore, the aim of this study was to verify whether elite athletes from different sports would produce maximum mean propulsive power values at a narrow range of mean propulsive velocities, resulting in similar jump heights. One hundred and nine elite athletes from several individual/team sport disciplines underwent repetitions at maximal velocity with progressive loads, starting at 40% of their body mass with increments of 10% to determine the individual optimum power zone. Results indicated that regardless of sport discipline, the athletes’ optimum mean propulsive power was achieved at a mean propulsive velocity close to 1.0 m.s−1 (1.01 ± 0.07 m.s−1) and at a jump height close to 20 cm (20.47 ± 1.42 cm). Data were narrowly scattered around these values. Therefore, jump squat optimum power load can be determined simply by means of mean propulsive velocity or jump height determination in training/testing settings, allowing it to be implemented quickly in strength/power training.


PLOS ONE | 2016

Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises

Irineu Loturco; Lucas A. Pereira; Ronaldo Kobal; Thiago Maldonado; Alessandro Fromer Piazzi; Altamiro Bottino; Katia Kitamura; Cesar Cavinato Cal Abad; Miguel de Arruda; Fábio Yuzo Nakamura

Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players.


PLOS ONE | 2015

Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation

João Paulo Lopes-Silva; Jonatas Ferreira da Silva Santos; Braulio Henrique Magnani Branco; Cesar Cavinato Cal Abad; Luana Farias de Oliveira; Irineu Loturco; Emerson Franchini

Objectives The aim of this study was to evaluate the effect of caffeine ingestion on performance and estimated energy system contribution during simulated taekwondo combat and on post-exercise parasympathetic reactivation. Methods Ten taekwondo athletes completed two experimental sessions separated by at least 48 hours. Athletes consumed a capsule containing either caffeine (5 mg∙kg-1) or placebo (cellulose) one hour before the combat simulation (3 rounds of 2 min separated by 1 min passive recovery), in a double-blind, randomized, repeated-measures crossover design. All simulated combat was filmed to quantify the time spent fighting in each round. Lactate concentration and rating of perceived exertion were measured before and after each round, while heart rate (HR) and the estimated contribution of the oxidative (WAER), ATP-PCr (WPCR), and glycolytic (W[La-]) systems were calculated during the combat simulation. Furthermore, parasympathetic reactivation after the combat simulation was evaluated through 1) taking absolute difference between the final HR observed at the end of third round and the HR recorded 60-s after (HRR60s), 2) taking the time constant of HR decay obtained by fitting the 6-min post-exercise HRR into a first-order exponential decay curve (HRRτ), or by 3) analyzing the first 30-s via logarithmic regression analysis (T30). Results Caffeine ingestion increased estimated glycolytic energy contribution in relation to placebo (12.5 ± 1.7 kJ and 8.9 ± 1.2 kJ, P = 0.04). However, caffeine did not improve performance as measured by attack number (CAF: 26. 7 ± 1.9; PLA: 27.3 ± 2.1, P = 0.48) or attack time (CAF: 33.8 ± 1.9 s; PLA: 36.6 ± 4.5 s, P = 0.58). Similarly, RPE (CAF: 11.7 ± 0.4 a.u.; PLA: 11.5 ± 0.3 a.u., P = 0.62), HR (CAF: 170 ± 3.5 bpm; PLA: 174.2 bpm, P = 0.12), oxidative (CAF: 109.3 ± 4.5 kJ; PLA: 107.9 kJ, P = 0.61) and ATP-PCr energy contributions (CAF: 45.3 ± 3.4 kJ; PLA: 46.8 ± 3.6 kJ, P = 0.72) during the combat simulation were unaffected. Furthermore, T30 (CAF: 869.1 ± 323.2 s; PLA: 735.5 ± 232.2 s, P = 0.58), HRR60s (CAF: 34 ± 8 bpm; PLA: 38 ± 9 bpm, P = 0.44), HRRτ (CAF: 182.9 ± 40.5 s, PLA: 160.3 ± 62.2 s, P = 0.23) and HRRamp (CAF: 70.2 ± 17.4 bpm; PLA: 79.2 ± 17.4 bpm, P = 0.16) were not affected by caffeine ingestion. Conclusions Caffeine ingestion increased the estimated glycolytic contribution during taekwondo combat simulation, but this did not result in any changes in performance, perceived exertion or parasympathetic reactivation.


International Journal of Sports Physiology and Performance | 2016

Using Bar Velocity to Predict Maximum Dynamic Strength in the Half-Squat Exercise

Irineu Loturco; Lucas A. Pereira; Cesar Cavinato Cal Abad; Saulo Gil; Katia Kitamura; Ronaldo Kobal; Fábio Yuzo Nakamura

PURPOSE To determine whether athletes from different sport disciplines present similar mean propulsive velocity (MPV) in the half-squat (HS) during submaximal and maximal tests, enabling prediction of 1-repetition maximum (1-RM) from MPV at any given submaximal load. METHODS Sixty-four male athletes, comprising American football, rugby, and soccer players; sprinters and jumpers; and combat-sport strikers attended 2 testing sessions separated by 2-4 wk. On the first visit, a standardized 1-RM test was performed. On the second, athletes performed HSs on Smith-machine equipment, using relative percentages of 1-RM to determine the respective MPV of submaximal and maximal loads. Linear regression established the relationship between MPV and percentage of 1-RM. RESULTS A very strong linear relationship (R2 ≈ .96) was observed between the MPV and the percentages of HS 1-RM, resulting in the following equation: %HS 1-RM = -105.05 × MPV + 131.75. The MPV at HS 1-RM was ~0.3 m/s. CONCLUSION This equation can be used to predict HS 1-RM on a Smith machine with a high degree of accuracy.


International Journal of Sports Medicine | 2015

A Correlational Analysis of Tethered Swimming, Swim Sprint Performance and Dry-land Power Assessments

I. Loturco; A. C. Barbosa; R. K. Nocentini; Lucas A. Pereira; Ronaldo Kobal; K. Kitamura; Cesar Cavinato Cal Abad; Pedro Figueiredo; Fábio Yuzo Nakamura

Swimmers are often tested on both dry-land and in swimming exercises. The aim of this study was to test the relationships between dry-land, tethered force-time curve parameters and swimming performances in distances up to 200 m. 10 young male high-level swimmers were assessed using the maximal isometric bench-press and quarter-squat, mean propulsive power in jump-squat, squat and countermovement jumps (dry-land assessments), peak force, average force, rate of force development (RFD) and impulse (tethered swimming) and swimming times. Pearson product-moment correlations were calculated among the variables. Peak force and average force were very largely correlated with the 50- and 100-m swimming performances (r=- 0.82 and -0.74, respectively). Average force was very-largely/largely correlated with the 50- and 100-m performances (r=- 0.85 and -0.67, respectively). RFD and impulse were very-largely correlated with the 50-m time (r=- 0.72 and -0.76, respectively). Tethered swimming parameters were largely correlated (r=0.65 to 0.72) with mean propulsive power in jump-squat, squat-jump and countermovement jumps. Finally, mean propulsive power in jump-squat was largely correlated (r=- 0.70) with 50-m performance. Due to the significant correlations between dry-land assessments and tethered/actual swimming, coaches are encouraged to implement strategies able to increase leg power in sprint swimmers.


Journal of Sports Sciences | 2017

Bar velocities capable of optimising the muscle power in strength-power exercises

Irineu Loturco; Lucas A. Pereira; Cesar Cavinato Cal Abad; Facundo Tabares; José Eduardo Moraes; Ronaldo Kobal; Katia Kitamura; Fábio Yuzo Nakamura

ABSTRACT This study aimed at testing whether there are mean propulsive velocities (MPVs) capable of maximising the mean propulsive power (MPP) during the execution of bench press (BP), bench throw (BT), half squat (HS) and jump squat (JS). Additionally, we assessed the differences in MPP/MPV between ballistic and traditional exercises. Seventeen male rugby sevens players performed MPP tests in BP, BT, HS and JS and maximum isometric force (MIF) tests in HS and BP. The JS presented higher MPP (977.4 ± 156.2 W) than the HS (897.9 ± 157.7 W) (P < 0.05); the BP (743.4 ± 100.1 W) presented higher MPP than the BT (697.8 ± 70.4 W) (P < 0.05). Ballistic exercises presented higher optimum MPV (JS = 1.02 ± 0.07 m·s−1; BT = 1.67 ± 0.15 m·s−1) than traditional exercises (HS = 0.93 ± 0.08 m·s−1; BP = 1.40 ± 0.13 m·s−1) (P < 0.05). The optimum MPP in the JS, BT, HS and BP occurred at 28.2 ± 5.79, 23.3 ± 4.24, 32.4 ± 9.46 and 27.7 ± 5.33% of the MIF, respectively. The coefficient of variation (CV) of MPV at optimum MPP ranged from 7.4% to 9.7%, while the CV of %MIF ranged from 18.2% to 29.2%. The MPV is a more precise indicator of the optimum loads than the percentages of MIF due to its low inter-subject variability as expressed by CV. Therefore, MPV can be used to determine the optimum power load in the four investigated exercises.


Journal of Human Kinetics | 2014

Transference of traditional versus complex strength and power training to sprint performance.

Irineu Loturco; Valmor Tricoli; Hamilton Roschel; Fábio Yuzo Nakamura; Cesar Cavinato Cal Abad; Ronaldo Kobal; Saulo Gil; Juan José González-Badillo

Abstract The purpose of this study was to determine the effects of two different strength-power training models on sprint performance. Forty-eight soldiers of the Brazilian brigade of special operations with at least one year of army training experience were divided into a control group (CG: n = 15, age: 20.2 ± 0.7 years, body height: 1.74 ± 0.06 m, and body mass: 66.7 ± 9.8 kg), a traditional training group (TT: n = 18, age: 20.1 ± 0.7 years, body height: 1.71 ± 0.05 m, and body mass: 64.2 ± 4.7 kg), and a complex training group (CT: n = 15, age: 20.3 ± 0.8 years, body height: 1.71 ± 0.07 m; and body mass: 64.0 ± 8.8 kg). Maximum strength (25% and 26%), CMJ height (36% and 39%), mean power (30% and 35%) and mean propulsive power (22% and 28%) in the loaded jump squat exercise, and 20-m sprint speed (16% and 14%) increased significantly (p<0.05) following the TT and CT, respectively. However, the transfer effect coefficients (TEC) of strength and power performances to 20-m sprint performance following the TT were greater than the CT throughout the 9-week training period. Our data suggest that TT is more effective than CT to improve sprint performance in moderately trained subjects.

Collaboration


Dive into the Cesar Cavinato Cal Abad's collaboration.

Top Co-Authors

Avatar

Irineu Loturco

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Lucas A. Pereira

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Ronaldo Kobal

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saulo Gil

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valmor Tricoli

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Ciro Winckler

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge