Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cesar Libanati is active.

Publication


Featured researches published by Cesar Libanati.


The New England Journal of Medicine | 2009

Denosumab for Prevention of Fractures in Postmenopausal Women with Osteoporosis

Steven R. Cummings; Javier San Martin; Michael R. McClung; Ethel S. Siris; Richard Eastell; Ian R. Reid; Pierre D. Delmas; Holly B. Zoog; Matt Austin; Andrea Wang; Stepan Kutilek; Silvano Adami; Jose Zanchetta; Cesar Libanati; Suresh Siddhanti; Claus Christiansen

BACKGROUND Denosumab is a fully human monoclonal antibody to the receptor activator of nuclear factor-kappaB ligand (RANKL) that blocks its binding to RANK, inhibiting the development and activity of osteoclasts, decreasing bone resorption, and increasing bone density. Given its unique actions, denosumab may be useful in the treatment of osteoporosis. METHODS We enrolled 7868 women between the ages of 60 and 90 years who had a bone mineral density T score of less than -2.5 but not less than -4.0 at the lumbar spine or total hip. Subjects were randomly assigned to receive either 60 mg of denosumab or placebo subcutaneously every 6 months for 36 months. The primary end point was new vertebral fracture. Secondary end points included nonvertebral and hip fractures. RESULTS As compared with placebo, denosumab reduced the risk of new radiographic vertebral fracture, with a cumulative incidence of 2.3% in the denosumab group, versus 7.2% in the placebo group (risk ratio, 0.32; 95% confidence interval [CI], 0.26 to 0.41; P<0.001)--a relative decrease of 68%. Denosumab reduced the risk of hip fracture, with a cumulative incidence of 0.7% in the denosumab group, versus 1.2% in the placebo group (hazard ratio, 0.60; 95% CI, 0.37 to 0.97; P=0.04)--a relative decrease of 40%. Denosumab also reduced the risk of nonvertebral fracture, with a cumulative incidence of 6.5% in the denosumab group, versus 8.0% in the placebo group (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01)--a relative decrease of 20%. There was no increase in the risk of cancer, infection, cardiovascular disease, delayed fracture healing, or hypocalcemia, and there were no cases of osteonecrosis of the jaw and no adverse reactions to the injection of denosumab. CONCLUSIONS Denosumab given subcutaneously twice yearly for 36 months was associated with a reduction in the risk of vertebral, nonvertebral, and hip fractures in women with osteoporosis. (ClinicalTrials.gov number, NCT00089791.)


The New England Journal of Medicine | 2014

Romosozumab in Postmenopausal Women with Low Bone Mineral Density

Michael R. McClung; Andreas Grauer; Steven Boonen; Michael A. Bolognese; Jacques P. Brown; A Diez-Perez; Bente Langdahl; Jean-Yves Reginster; Jose Zanchetta; Scott M. Wasserman; Leonid Katz; Judy Maddox; Yu-Ching Yang; Cesar Libanati; Henry G. Bone

BACKGROUND Sclerostin is an osteocyte-derived inhibitor of osteoblast activity. The monoclonal antibody romosozumab binds to sclerostin and increases bone formation. METHODS In a phase 2, multicenter, international, randomized, placebo-controlled, parallel-group, eight-group study, we evaluated the efficacy and safety of romosozumab over a 12-month period in 419 postmenopausal women, 55 to 85 years of age, who had low bone mineral density (a T score of -2.0 or less at the lumbar spine, total hip, or femoral neck and -3.5 or more at each of the three sites). Participants were randomly assigned to receive subcutaneous romosozumab monthly (at a dose of 70 mg, 140 mg, or 210 mg) or every 3 months (140 mg or 210 mg), subcutaneous placebo, or an open-label active comparator--oral alendronate (70 mg weekly) or subcutaneous teriparatide (20 μg daily). The primary end point was the percentage change from baseline in bone mineral density at the lumbar spine at 12 months. Secondary end points included percentage changes in bone mineral density at other sites and in markers of bone turnover. RESULTS All dose levels of romosozumab were associated with significant increases in bone mineral density at the lumbar spine, including an increase of 11.3% with the 210-mg monthly dose, as compared with a decrease of 0.1% with placebo and increases of 4.1% with alendronate and 7.1% with teriparatide. Romosozumab was also associated with large increases in bone mineral density at the total hip and femoral neck, as well as transitory increases in bone-formation markers and sustained decreases in a bone-resorption marker. Except for mild, generally nonrecurring injection-site reactions with romosozumab, adverse events were similar among groups. CONCLUSIONS In postmenopausal women with low bone mass, romosozumab was associated with increased bone mineral density and bone formation and with decreased bone resorption. (Funded by Amgen and UCB Pharma; ClinicalTrials.gov number, NCT00896532.).


Journal of Bone and Mineral Research | 2009

Comparison of the Effect of Denosumab and Alendronate on BMD and Biochemical Markers of Bone Turnover in Postmenopausal Women With Low Bone Mass : A Randomized, Blinded, Phase 3 Trial

Jacques P. Brown; Richard L. Prince; Chad Deal; Robert R. Recker; Douglas P. Kiel; Luiz de Gregorio; Peyman Hadji; Lorenz C. Hofbauer; Jose M Álvaro-Gracia; Huei Wang; Matthew Austin; Rachel B. Wagman; Richard Newmark; Cesar Libanati; Javier San Martin; Henry G. Bone

Denosumab is a fully human monoclonal antibody that inhibits bone resorption by neutralizing RANKL, a key mediator of osteoclast formation, function, and survival. This phase 3, multicenter, double‐blind study compared the efficacy and safety of denosumab with alendronate in postmenopausal women with low bone mass. One thousand one hundred eighty‐nine postmenopausal women with a T‐score ≤ −2.0 at the lumbar spine or total hip were randomized 1:1 to receive subcutaneous denosumab injections (60 mg every 6 mo [Q6M]) plus oral placebo weekly (n = 594) or oral alendronate weekly (70 mg) plus subcutaneous placebo injections Q6M (n = 595). Changes in BMD were assessed at the total hip, femoral neck, trochanter, lumbar spine, and one‐third radius at 6 and 12 mo and in bone turnover markers at months 1, 3, 6, 9, and 12. Safety was evaluated by monitoring adverse events and laboratory values. At the total hip, denosumab significantly increased BMD compared with alendronate at month 12 (3.5% versus 2.6%; p < 0.0001). Furthermore, significantly greater increases in BMD were observed with denosumab treatment at all measured skeletal sites (12‐mo treatment difference: 0.6%, femoral neck; 1.0%, trochanter; 1.1%, lumbar spine; 0.6%, one‐third radius; p ≤ 0.0002 all sites). Denosumab treatment led to significantly greater reduction of bone turnover markers compared with alendronate therapy. Adverse events and laboratory values were similar for denosumab‐ and alendronate‐treated subjects. Denosumab showed significantly larger gains in BMD and greater reduction in bone turnover markers compared with alendronate. The overall safety profile was similar for both treatments.


Journal of Bone and Mineral Research | 2012

Five years of denosumab exposure in women with postmenopausal osteoporosis: Results from the first two years of the FREEDOM extension.

Socrates E. Papapoulos; Roland Chapurlat; Cesar Libanati; Maria Luisa Brandi; Jacques P. Brown; E. Czerwinski; M. A. Krieg; Zulema Man; Dan Mellström; Sebastião Cezar Radominski; Jean-Yves Reginster; Heinrich Resch; José A Román Ivorra; Christian Roux; Eric Vittinghoff; Matthew Austin; N. Daizadeh; Michelle N Bradley; Andreas Grauer; Steven R. Cummings; Henry G. Bone

The 3‐year FREEDOM trial assessed the efficacy and safety of 60 mg denosumab every 6 months for the treatment of postmenopausal women with osteoporosis. Participants who completed the FREEDOM trial were eligible to enter an extension to continue the evaluation of denosumab efficacy and safety for up to 10 years. For the extension results presented here, women from the FREEDOM denosumab group had 2 more years of denosumab treatment (long‐term group) and those from the FREEDOM placebo group had 2 years of denosumab exposure (cross‐over group). We report results for bone turnover markers (BTMs), bone mineral density (BMD), fracture rates, and safety. A total of 4550 women enrolled in the extension (2343 long‐term; 2207 cross‐over). Reductions in BTMs were maintained (long‐term group) or occurred rapidly (cross‐over group) following denosumab administration. In the long‐term group, lumbar spine and total hip BMD increased further, resulting in 5‐year gains of 13.7% and 7.0%, respectively. In the cross‐over group, BMD increased at the lumbar spine (7.7%) and total hip (4.0%) during the 2‐year denosumab treatment. Yearly fracture incidences for both groups were below rates observed in the FREEDOM placebo group and below rates projected for a “virtual untreated twin” cohort. Adverse events did not increase with long‐term denosumab administration. Two adverse events in the cross‐over group were adjudicated as consistent with osteonecrosis of the jaw. Five‐year denosumab treatment of women with postmenopausal osteoporosis maintained BTM reduction and increased BMD, and was associated with low fracture rates and a favorable risk/benefit profile.


Journal of Bone and Mineral Research | 2010

Microarchitectural deterioration of cortical and trabecular bone: Differing effects of denosumab and alendronate

Ego Seeman; Pierre D. Delmas; David A. Hanley; Deborah E. Sellmeyer; Angela M Cheung; Elizabeth Shane; Ann E. Kearns; Thierry Thomas; Steven K. Boyd; Stephanie Boutroy; Cesar E. Bogado; Sharmila Majumdar; Michelle Fan; Cesar Libanati; Jose Zanchetta

The intensity of bone remodeling is a critical determinant of the decay of cortical and trabecular microstructure after menopause. Denosumab suppresses remodeling more than alendronate, leading to greater gains in areal bone mineral density (aBMD). These greater gains may reflect differing effects of each drug on bone microarchitecture and strength. In a phase 2 double‐blind pilot study, 247 postmenopausal women were randomized to denosumab (60 mg subcutaneous 6 monthly), alendronate (70 mg oral weekly), or placebo for 12 months. All received daily calcium and vitamin D. Morphologic changes were assessed using high‐resolution peripheral quantitative computed tomography (HR‐pQCT) at the distal radius and distal tibia and QCT at the distal radius. Denosumab decreased serum C‐telopeptide more rapidly and markedly than alendronate. In the placebo arm, total, cortical, and trabecular BMD and cortical thickness decreased (−2.1% to −0.8%) at the distal radius after 12 months. Alendronate prevented the decline (−0.6% to 2.4%, p = .051 to <.001 versus placebo), whereas denosumab prevented the decline or improved these variables (0.3% to 3.4%, p < .001 versus placebo). Changes in total and cortical BMD were greater with denosumab than with alendronate (p ≤ .024). Similar changes in these parameters were observed at the tibia. The polar moment of inertia also increased more in the denosumab than alendronate or placebo groups (p < .001). Adverse events did not differ by group. These data suggest that structural decay owing to bone remodeling and progression of bone fragility may be prevented more effectively with denosumab.


Journal of Bone and Mineral Research | 2011

Effects of denosumab on bone turnover markers in postmenopausal osteoporosis.

Richard Eastell; Claus Christiansen; Andreas Grauer; Stepan Kutilek; Cesar Libanati; Michael R. McClung; Ian R. Reid; Heinrich Resch; Ethel S. Siris; Daniel Uebelhart; Andrea Wang; Georges Weryha; Steven R. Cummings

Denosumab, a fully human monoclonal antibody to RANKL, decreases bone remodeling, increases bone density, and reduces fracture risk. This study evaluates the time course and determinants of bone turnover marker (BTM) response during denosumab treatment, the percentage of denosumab‐treated women with BTMs below the premenopausal reference interval, and the correlations between changes in BTMs and bone mineral density (BMD). The BTM substudy of the Fracture REduction Evaulation of Denosumab in Osteoporosis every 6 Months (FREEDOM) Trial included 160 women randomized to subcutaneous denosumab (60 mg) or placebo injections every 6 months for 3 years. Biochemical markers of bone resorption (serum C‐telopeptide of type I collagen [CTX] and tartrate‐resistant acid phosphatise [TRACP‐5b]) and bone formation (serum procollagen type I N‐terminal propeptide [PINP] and bone alkaline phosphatase [BALP]) were measured at baseline and at 1, 6, 12, 24, and 36 months. Decreases in CTX were more rapid and greater than decreases in PINP and BALP. One month after injection, CTX levels in all denosumab‐treated subjects decreased to levels below the premenopausal reference interval. CTX values at the end of the dosing period were influenced by baseline CTX values and the dosing interval. The percentage of subjects with CTX below the premenopausal reference interval before each subsequent injection decreased from 79% to 51% during the study. CTX and PINP remained below the premenopausal reference interval at all time points in 46% and 31% denosumab‐treated subjects, respectively. With denosumab, but not placebo, there were significant correlations between CTX reduction and BMD increase (r = −0.24 to −0.44). The BTM response pattern with denosumab is unique and should be appreciated by physicians to monitor this treatment effectively.


Journal of Bone and Mineral Research | 2012

Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures

Matthew Austin; Yu-Ching Yang; Eric Vittinghoff; Silvano Adami; Steven Boonen; Douglas C. Bauer; Gerolamo Bianchi; Michael A. Bolognese; Claus Christiansen; Richard Eastell; Andreas Grauer; Federico Hawkins; David L. Kendler; Beatriz Oliveri; Michael R. McClung; Ian R. Reid; Ethel S. Siris; Jose Zanchetta; Cristiano Af Zerbini; Cesar Libanati; Steven R. Cummings

Dual‐energy X‐ray absorptiometric bone mineral density (DXA BMD) is a strong predictor of fracture risk in untreated patients. However, previous patient‐level studies suggest that BMD changes explain little of the fracture risk reduction observed with osteoporosis treatment. We investigated the relevance of DXA BMD changes as a predictor for fracture risk reduction using data from the FREEDOM trial, which randomly assigned placebo or denosumab 60 mg every 6 months to 7808 women aged 60 to 90 years with a spine or total hip BMD T‐score < −2.5 and not < −4.0. We took a standard approach to estimate the percent of treatment effect explained using percent changes in BMD at a single visit (months 12, 24, or 36). We also applied a novel approach using estimated percent changes in BMD from baseline at the time of fracture occurrence (time‐dependent models). Denosumab significantly increased total hip BMD by 3.2%, 4.4%, and 5.0% at 12, 24, and 36 months, respectively. Denosumab decreased the risk of new vertebral fractures by 68% (p < 0.0001) and nonvertebral fracture by 20% (p = 0.01) over 36 months. Regardless of the method used, the change in total hip BMD explained a considerable proportion of the effect of denosumab in reducing new or worsening vertebral fracture risk (35% [95% confidence interval (CI): 20%–61%] and 51% [95% CI: 39%–66%] accounted for by percent change at month 36 and change in time‐dependent BMD, respectively) and explained a considerable amount of the reduction in nonvertebral fracture risk (87% [95% CI: 35% – >100%] and 72% [95% CI: 24% – >100%], respectively). Previous patient‐level studies may have underestimated the strength of the relationship between BMD change and the effect of treatment on fracture risk or this relationship may be unique to denosumab.


Bone | 2014

Differing effects of denosumab and alendronate on cortical and trabecular bone.

Roger Zebaze; Cesar Libanati; Matthew Austin; Ali Ghasem-Zadeh; David A. Hanley; Jose Zanchetta; Thierry Thomas; Stephanie Boutroy; Cesar E. Bogado; John P. Bilezikian; Ego Seeman

Vertebral fractures and trabecular bone loss are hallmarks of osteoporosis. However, 80% of fractures are non-vertebral and 70% of all bone loss is cortical and is produced by intracortical remodeling. The resulting cortical porosity increases bone fragility exponentially. Denosumab, a fully human anti-RANKL antibody, reduces the rate of bone remodeling more than alendronate. The aim of this study was to quantify the effects of denosumab and alendronate on cortical and trabecular bone. Postmenopausal women, mean age 61years (range 50 to 70), were randomized double blind to placebo (n=82), alendronate 70mg weekly (n=82), or denosumab 60mg every 6months (n=83) for 12months. Porosity of the compact-appearing cortex (CC), outer and inner cortical transitional zones (OTZ, ITZ), and trabecular bone volume/total volume (BV/TV) of distal radius were quantified in vivo from high-resolution peripheral quantitative computed tomography scans. Denosumab reduced remodeling more rapidly and completely than alendronate, reduced porosity of the three cortical regions at 6months, more so by 12months relative to baseline and controls, and 1.5- to 2-fold more so than alendronate. The respective changes at 12months were [mean (95% CI)]; CC: -1.26% (-1.61, -0.91) versus -0.48% (-0.96, 0.00), p=0.012; OTZ: -1.97% (-2.37, -1.56) versus -0.81% (-1.45, -0.17), p=0.003; and ITZ: -1.17% (-1.38, -0.97) versus -0.78% (-1.04, -0.52), p=0.021. Alendronate reduced porosity of the three cortical regions at 6months relative to baseline and controls but further decreased porosity of only the ITZ at 12months. By 12months, CC porosity was no different than baseline or controls, OTZ porosity was reduced only relative to baseline, not controls, while ITZ porosity was reduced relative to baseline and 6months, but not controls. Each treatment increased trabecular BV/TV volume similarly: 0.25% (0.19, 0.30) versus 0.19% (0.13, 0.30), p=0.208. The greater reduction in cortical porosity by denosumab may be due to greater inhibition of intracortical remodeling. Head to head studies are needed to determine whether differences in porosity result in differing fracture outcomes.


Bone | 2010

Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density.

Harry K. Genant; Klaus Engelke; David A. Hanley; Jacques P. Brown; M. Omizo; Henry G. Bone; A.J. Kivitz; Thomas Fuerst; Huei Wang; Matt Austin; Cesar Libanati

BACKGROUND Bone strength is determined by both cortical and trabecular bone compartments and can be evaluated radiologically through measurement of bone density and geometry. Quantitative computed tomography (QCT) separately assesses cortical and trabecular bone reliably at various sites, including the distal radius where there is a gradation of cortical and trabecular bone. We evaluated the effect of denosumab, a fully human monoclonal antibody that inhibits RANK ligand, on distal radius QCT in women with low bone mass to assess the impact of this novel therapy separately on trabecular and cortical bone. METHODS Postmenopausal women (n=332) with spine areal bone mineral density (BMD) T-scores between -1.0 and -2.5 received denosumab 60 mg or placebo every 6 months during the 24-month study. QCT measurements along the distal radius were made using a whole-body computed tomography scanner and were used to determine the percentage change from baseline in volumetric BMD; volumetric bone mineral content (BMC); cortical thickness; volume; circumference; and density-weighted polar moment of inertia (PMI), a derived index of bone strength. RESULTS Denosumab treatment significantly increased total BMD and BMC along the radius (proximal, distal, and ultradistal sections). At 24 months, the ultradistal region had the greatest percentage increase in total BMD (4.7% [95% CI, 3.6-5.7]; P<0.001) and total BMC (5.7% [95% CI, 4.8-6.6]; P<0.001) over placebo. When cortical and trabecular bone at the proximal and distal regions were separately assessed, cortical bone had significant (P<0.001) increases in BMD, BMC, and thickness, and trabecular bone had a significant increase in BMD relative to placebo (P<0.05). Bone strength, estimated by density-weighted PMI, significantly increased compared with placebo after 6 months of treatment, with the largest percentage increase occurring at 24 months in the ultradistal region (6.6% [95% CI, 5.6-7.6]; P<0.0001). CONCLUSIONS QCT measurements demonstrated that denosumab significantly increased BMD, BMC, and PMI along the radius over 24 months. Additionally, denosumab prevented the decrease in QCT-measured cortical thickness observed in the placebo group. These data extend the evidence from previous dual-energy X-ray absorptiometry studies for a positive effect of denosumab on both the cortical and trabecular bone compartments and propose a possible mechanism for the reduction in fracture risk achieved with denosumab therapy.


Bone | 2009

Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA).

Klaus Engelke; Cesar Libanati; Yu Liu; Huei Wang; Matt Austin; Tom Fuerst; Bernd Stampa; Wolfram Timm; Harry K. Genant

BACKGROUND Dual-energy X-ray absorptiometry (DXA) allows clinically relevant measurement of bone mineral density (BMD) at central and appendicular skeletal sites, but DXA has a limited ability to assess bone geometry and cannot distinguish between the cortical and trabecular bone compartments. Quantitative computed tomography (QCT) can supplement DXA by enabling geometric and compartmental bone assessments. Whole-body spiral CT scanners are widely available and require only seconds per scan, in contrast to peripheral QCT scanners, which have restricted availability, limited spatial resolution, and require several minutes of scanning time. This study evaluated the accuracy and precision of whole-body spiral CT scanners for quantitatively assessing the distal radius, a common site of non-vertebral osteoporosis-related fractures, and compared the CT-measured densitometric values with those obtained from dual-energy-X-ray absorptiometry. SUBJECTS AND METHODS A total of 161 postmenopausal women with baseline lumbar spine BMD T-scores between -1.0 and -2.5 underwent left forearm QCT using whole-body spiral CT scanners twice, 1 month apart. QCT volumes of interest were defined and analyzed at 3 specific radial regions: the ultradistal region by using slices at 8, 9, and 10 mm proximal to the ulnar styloid tip; the distal region by a slice 20 mm proximal; and the middle region by a slice 40 mm proximal. BMD, bone mineral content (BMC), volume, and average cortical thickness and circumference were measured. We evaluated QCT accuracy and precision and also report correlations between QCT and DXA for BMD and BMC. RESULTS Overall accuracy and precision errors for BMD, BMC and volume were consistent with known skeletal QCT technology precision and were generally less than 3%. BMD and BMC assessed by QCT and DXA were correlated (r=0.55 to 0.80). DISCUSSION Whole-body spiral CT scanners allow densitometric evaluations of the distal radius with good accuracy and very good precision. This original and convenient method provides a tool to further investigate cortical and trabecular bone variables in the peripheral skeleton in osteoporotic patients. These assessments, coupled with evaluation of the effects on cortical and trabecular bone measured in response to therapies for osteoporosis, may advance our understanding of the contributors to non-vertebral fracture occurrence.

Collaboration


Dive into the Cesar Libanati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose Zanchetta

Universidad del Salvador

View shared research outputs
Top Co-Authors

Avatar

Michael R. McClung

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus Engelke

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge