Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cesar Tovar is active.

Publication


Featured researches published by Cesar Tovar.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer

Hannah V. Siddle; Alexandre Kreiss; Cesar Tovar; Chun Kit Yuen; Yuanyuan Cheng; Katherine Belov; Kate Swift; Anne-Maree Pearse; Rodrigo Hamede; Menna E. Jones; Karsten Skjødt; Gm Woods; Jim Kaufman

Contagious cancers that pass between individuals as an infectious cell line are highly unusual pathogens. Devil facial tumor disease (DFTD) is one such contagious cancer that emerged 16 y ago and is driving the Tasmanian devil to extinction. As both a pathogen and an allograft, DFTD cells should be rejected by the host–immune response, yet DFTD causes 100% mortality among infected devils with no apparent rejection of tumor cells. Why DFTD cells are not rejected has been a question of considerable confusion. Here, we show that DFTD cells do not express cell surface MHC molecules in vitro or in vivo, due to down-regulation of genes essential to the antigen-processing pathway, such as β2-microglobulin and transporters associated with antigen processing. Loss of gene expression is not due to structural mutations, but to regulatory changes including epigenetic deacetylation of histones. Consequently, MHC class I molecules can be restored to the surface of DFTD cells in vitro by using recombinant devil IFN-γ, which is associated with up-regulation of the MHC class II transactivator, a key transcription factor with deacetylase activity. Further, expression of MHC class I molecules by DFTD cells can occur in vivo during lymphocyte infiltration. These results explain why T cells do not target DFTD cells. We propose that MHC-positive or epigenetically modified DFTD cells may provide a vaccine to DFTD. In addition, we suggest that down-regulation of MHC molecules using regulatory mechanisms allows evolvability of transmissible cancers and could affect the evolutionary trajectory of DFTD.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A second transmissible cancer in Tasmanian devils

Ruth J. Pye; David Pemberton; Cesar Tovar; Jose M. C. Tubio; Karen Dun; Samantha Fox; Jocelyn Darby; Dane Hayes; Graeme W. Knowles; Alexandre Kreiss; Hannah V. Siddle; Kate Swift; A. Bruce Lyons; Elizabeth P. Murchison; Gm Woods

Significance Transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. Only three transmissible cancers have been reported in nature, suggesting that such diseases emerge rarely. One of the known transmissible cancers affects Tasmanian devils, and is threatening this species with extinction. Here we report the discovery of a second transmissible cancer in Tasmanian devils. This cancer causes facial tumors that are grossly indistinguishable from those caused by the first-described transmissible cancer in this species; however, tumors derived from this second clone are genetically distinct. These findings indicate that Tasmanian devils have spawned at least two different transmissible cancers, and suggest that transmissible cancers may arise more frequently in nature than previously considered. Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.


Veterinary Pathology | 2011

Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian devils: immunohistochemistry studies

Cesar Tovar; David L. Obendorf; Elizabeth P. Murchison; Anthony T. Papenfuss; Alexandre Kreiss; Gm Woods

Devil facial tumor disease (DFTD) is a transmissible neoplasm that is threatening the survival of the Tasmanian devil. Genetic analyses have indicated that the disease is a peripheral nerve sheath neoplasm of Schwann cell origin. DFTD cells express genes characteristic of myelinating Schwann cells, and periaxin, a Schwann cell protein, has been proposed as a marker for the disease. Diagnosis of DFTD is currently based on histopathology, cytogenetics, and clinical appearance of the disease in affected animals. As devils are susceptible to a variety of neoplastic processes, a specific diagnostic test is required to differentiate DFTD from cancers of similar morphological appearance. This study presents a thorough examination of the expression of a set of Schwann cell and other neural crest markers in DFTD tumors and normal devil tissues. Samples from 20 primary DFTD tumors and 10 DFTD metastases were evaluated by immunohistochemistry for the expression of periaxin, S100 protein, peripheral myelin protein 22, nerve growth factor receptor, nestin, neuron specific enolase, chromogranin A, and myelin basic protein. Of these, periaxin was confirmed as the most sensitive and specific marker, labeling the majority of DFTD cells in 100% of primary DFTD tumors and DFTD metastases. In normal tissues, periaxin showed specificity for Schwann cells in peripheral nerve bundles. This marker was then evaluated in cultured devil Schwann cells, DFTD cell lines, and xenografted DFTD tumors. Periaxin expression was maintained in all these models, validating its utility as a diagnostic marker for the disease.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2014

Identification of Dendritic Cells, B Cell and T Cell Subsets in Tasmanian Devil Lymphoid Tissue; Evidence for Poor Immune Cell Infiltration into Devil Facial Tumors

Lauren J. Howson; Katrina Morris; Takumi Kobayashi; Cesar Tovar; Alexandre Kreiss; Anthony T. Papenfuss; Lynn M. Corcoran; Katherine Belov; Gm Woods

The Tasmanian devil is under threat of extinction due to the transmissible devil facial tumor disease (DFTD). This fatal tumor is an allograft that does not induce an immune response, raising questions about the activity of Tasmanian devil immune cells. T and B cell analysis has been limited by a lack of antibodies, hence the need to produce such reagents. Amino acid sequence analysis revealed that CD4, CD8, IgM, and IgG were closely related to other marsupials. Monoclonal antibodies were produced against CD4, CD8, IgM, and IgG by generating bacterial fusion proteins. These, and commercial antibodies against CD1a and CD83, identified T cells, B cells and dendritic cells by immunohistochemistry. CD4+ and CD8+ T cells were identified in pouch young thymus, adult lymph nodes, spleen, bronchus‐ and gut‐associated lymphoid tissue. Their anatomical distribution was characteristic of mammalian lymphoid tissues with more CD4+ than CD8+ cells in lymph nodes and splenic white pulp. IgM+ and IgG+ B cells were identified in adult lymph nodes, spleen, bronchus‐associated lymphoid tissue and gut‐associated lymphoid tissue, with more IgM+ than IgG+ cells. Dendritic cells were identified in lymph node, spleen and skin. This distribution is consistent with eutherian mammals and other marsupials, indicating they have the immune cell subsets for an anti‐tumor immunity. Devil facial tumor disease tumors contained more CD8+ than CD4+ cells, but in low numbers. There were also low numbers of CD1a+ and MHC class II+ cells, but no CD83+ IgM+ or IgG+ B cells, consistent with poor immune cell infiltration. Anat Rec, 297:925–938, 2014.


Veterinary Pathology | 2011

A Murine Xenograft Model for a Transmissible Cancer in Tasmanian Devils

Alexandre Kreiss; Cesar Tovar; David L. Obendorf; Karen Dun; Gm Woods

The number of Tasmanian devils in the wild is rapidly declining owing to a transmissible cancer, devil facial tumor disease (DFTD). Although progress has been made to understand the spread of this disease, crucial research on the pathogenesis of DFTD has been limited because of the threatened status of the host species. Here, the authors describe the development of a NOD/SCID (nonobese diabetic / severe combined immunodeficiency) mouse model that reproduces DFTD and provides a much-needed model to undertake studies into this intriguing transmissible cancer. Histologically, the DFTD produced in NOD/SCID mice (xenografted DFTD) was indistinguishable from the DFTD identified in Tasmanian devils. At the protein level, all xenografted DFTD tumors expressed periaxin, a marker that confirmed the diagnosis of DFTD. The karyotype of DFTD in NOD/SCID mice reproduced similar chromosomal alterations as seen in diseased devils. Furthermore, each NOD/SCID mouse inoculated with cultured DFTD tumor cells developed tumors, whereas DFTD did not develop in any of the inoculated immune-competent BALB/c mice.


Journal of Immunology | 2015

Immunology of a Transmissible Cancer Spreading among Tasmanian Devils

Gm Woods; Lauren J. Howson; Gabriella K. Brown; Cesar Tovar; Alexandre Kreiss; Lynn M. Corcoran; A. Bruce Lyons

Devil facial tumor disease (DFTD) is a transmissible cancer that has killed most of the Tasmanian devil (Sarcophilus harrissii) population. Since the first case appeared in the mid-1990s, it has spread relentlessly across the Tasmanian devil’s geographic range. As Tasmanian devils only exist in Tasmania, Australia, DFTD has the potential to cause extinction of this species. The origin of DFTD was a Schwann cell from a female devil. The disease is transmitted when devils bite each other around the facial areas, a behavior synonymous with this species. Every devil that is ‘infected’ with DFTD dies from the cancer. Once the DFTD cells have been transmitted, they appear to develop into a cancer without inducing an immune response. The DFTD cancer cells avoid allogeneic recognition because they do not express MHC class I molecules on the cell surface. A reduced genetic diversity and the production of immunosuppressive cytokines may also contribute.


Scientific Reports | 2017

Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils

Cesar Tovar; Ruth J. Pye; Alexandre Kreiss; Yuanyuan Cheng; Gabriella K. Brown; Jocelyn Darby; Richard Malley; Hannah V. Siddle; Karsten Skjødt; Jim Kaufman; Anabel Silva; Adriana Baz Morelli; Anthony T. Papenfuss; Lynn M. Corcoran; James M. Murphy; Martin Pearse; Katherine Belov; A. Bruce Lyons; Gm Woods

Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the ‘infectious’ agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.


Immunology and Cell Biology | 2016

Mitogen-activated Tasmanian devil blood mononuclear cells kill devil facial tumour disease cells.

Gabriella K. Brown; Cesar Tovar; Anne A Cooray; Alexandre Kreiss; Jocelyn Darby; James M. Murphy; Lynn M. Corcoran; Ss Bettiol; A. Bruce Lyons; Gm Woods

Devil facial tumour disease (DFTD) is a transmissible cancer that has brought the host species, the Tasmanian devil, to the brink of extinction. The cancer cells avoid allogeneic immune recognition by downregulating cell surface major histocompatibility complex (MHC) I expression. This should prevent CD8+ T cell, but not natural killer (NK) cell, cytotoxicity. The reason why NK cells, normally reactive to MHC‐negative cells, are not activated to kill DFTD cells has not been determined. The immune response of wild devils to DFTD, if it occurs, is uncharacterised. To investigate this, we tested 12 wild devils with DFTD, and found suggestive evidence of low levels of antibodies against DFTD cells in one devil. Eight of these devils were also analysed for cytotoxicity, however, none showed evidence for cytotoxicity against cultured DFTD cells. To establish whether mimicking activation of antitumour responses could induce cytotoxic activity against DFTD, Tasmanian devil peripheral blood mononuclear cells (PBMCs) were treated with either the mitogen Concanavalin A, the Toll‐like receptor agonist polyinosinic:polycytidylic acid or recombinant Tasmanian devil IL‐2. All induced the PBMC cells to kill cultured DFTD cells, suggesting that activation does not occur after encounter with DFTD cells in vivo, but can be induced. The identification of agents that activate cytotoxicity against DFTD target cells is critical for developing strategies to protect against DFTD. Such agents could function as adjuvants to induce functional immune responses capable of targeting DFTD cells and tumours in vivo.


Developmental and Comparative Immunology | 2015

Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil

Amanda L. Patchett; R Latham; Kate H. Brettingham-Moore; Cesar Tovar; A. Bruce Lyons; Gm Woods

Devil facial tumour disease (DFTD) is a fatally transmissible cancer that threatens the Tasmanian devil population. As Tasmanian devils do not produce an immune response against DFTD cells, an effective vaccine will require a strong adjuvant. Activation of innate immune system cells through toll-like receptors (TLRs) could provide this stimulation. It is unknown whether marsupials, including Tasmanian devils, express functional TLRs. We isolated RNA from peripheral blood mononuclear cells and, with PCR, detected transcripts for TLRs 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13. Stimulation of the mononuclear cells with agonists to these TLRs increased the expression of downstream TLR signaling products (IL1α, IL6, IL12A and IFNβ). Our data provide the first evidence that TLR signaling is functional in the mononuclear cells of the Tasmanian devil. Future DFTD vaccination trials will incorporate TLR agonists to enhance the immune response against DFTD.


PLOS ONE | 2016

The immunomodulatory small molecule imiquimod induces apoptosis in devil facial tumour cell lines

Amanda L. Patchett; Jocelyn Darby; Cesar Tovar; Ab Lyons; Gm Woods

The survival of the Tasmanian devil (Sarcophilus harrisii) is threatened by devil facial tumour disease (DFTD). This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7) signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy.

Collaboration


Dive into the Cesar Tovar's collaboration.

Top Co-Authors

Avatar

Gm Woods

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony T. Papenfuss

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge