Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cesare Achilli is active.

Publication


Featured researches published by Cesare Achilli.


Blood Reviews | 2013

Red cell investigations: Art and artefacts

Giampaolo Minetti; Stéphane Egée; Daniel Mörsdorf; Patrick Steffen; Asya Makhro; Cesare Achilli; Annarita Ciana; Jue Wang; Guillaume Bouyer; Ingolf Bernhardt; Christian Wagner; Serge Thomas; Anna Bogdanova; Lars Kaestner

Red blood cell research is important for both, the clinical haematology, such as transfusion medicine or anaemia investigations, and the basic research fields like exploring general membrane physiology or rheology. Investigations of red blood cells include a wide spectrum of methodologies ranging from population measurements with a billion cells evaluated simultaneously to single-cell approaches. All methods have a potential for pitfalls, and the comparison of data achieved by different technical approaches requires a consistent set of standards. Here, we give an overview of common mistakes using the most popular methodologies in red blood cell research and how to avoid them. Additionally, we propose a number of standards that we believe will allow for data comparison between the different techniques and different labs. We consider biochemical analysis, flux measurements, flow cytometry, patch-clamp measurements and dynamic fluorescence imaging as well as emerging single-cell techniques, such as the use of optical tweezers and atomic force microscopy.


Biochimica et Biophysica Acta | 2011

On the association of lipid rafts to the spectrin skeleton in human erythrocytes.

Annarita Ciana; Cesare Achilli; Cesare Balduini; Giampaolo Minetti

Lipid rafts are local inhomogeneities in the composition of the plasma membrane of living cells, that are enriched in sphingolipids and cholesterol in a liquid-ordered state, and proteins involved in receptor-mediated signalling. Interactions between lipid rafts and the cytoskeleton have been observed in various cell types. They are isolated as a fraction of the plasma membrane that resists solubilization by nonionic detergents at 4°C (detergent-resistant membranes, DRMs). We have previously described that DRMs are anchored to the spectrin-based membrane skeleton in human erythrocytes and can be released by increasing the pH and ionic strength of the solubilization medium with sodium carbonate. It was unexplained why this carbonate treatment was necessary and why this requirement was not reported by other workers in this area. We show here that when contaminating leukocytes are present in erythrocyte preparations that are subjected to detergent treatment, the isolation of DRMs can occur without the requirement for carbonate treatment. This is due to the uncontrolled breakdown of erythrocyte membrane components by hydrolases that are released from contaminating neutrophils that lead to proteolytic disruption of the supramolecular assembly of the membrane skeleton. Results presented here corroborate the concept that DRMs are anchored to the membrane skeleton through electrostatic interactions that most likely involve the spectrin molecule.


Journal of Leukocyte Biology | 2008

Neutrophil granulocytes uniquely express, among human blood cells, high levels of Methionine-sulfoxide-reductase enzymes.

Cesare Achilli; Annarita Ciana; Antonio Rossi; Cesare Balduini; Giampaolo Minetti

L‐Methionine (Met), in its free form or when inserted in proteins, is sensitive to oxidation of its thioether group by reactive oxygen species from exogenous or endogenous sources. Two stable diastereomers of Met sulfoxide [Met‐(O)] may be formed [Met‐S‐(O) and Met‐R‐(O)], but these can be reduced by two classes of Methionine‐sulfoxide‐reductase (Msr) enzymes: MsrA, which reduces the S, and MsrB, which reduces the R sulfoxide. In this study, we have examined the levels of expression of Msr in human blood cells by enzymatic activity assay, Western blotting, and RT‐PCR of purified populations of polymorphonuclear neutrophils and eosinophils, mononuclear cells, platelets, and erythrocytes. Our data indicate that of the blood cells analyzed, neutrophils expressed the highest activity, which was mainly of MsrB type. During degranulation of activated neutrophils, Msr activity was not released but remained confined within the cell, indicating a non‐granular localization. Immunoprecipitation and RT‐PCR studies indicated the almost complete lack of mitochondrial forms of Msrs in granulocytes. It is thus likely that Msrs are important as antioxidant/repair systems for neutrophils, cells with enormous capacity for the generation of reactive oxidants and hence, susceptible to oxidative damage.


Biofactors | 2015

The discovery of methionine sulfoxide reductase enzymes: An historical account and future perspectives.

Cesare Achilli; Annarita Ciana; Giampaolo Minetti

l‐methionine (l‐Met) is the only sulphur‐containing proteinogenic amino acid together with cysteine. Its importance is highlighted by it being the initiator amino acid for protein synthesis in all known living organisms. l‐Met, free or inserted into proteins, is sensitive to oxidation of its sulfide moiety, with formation of l‐Met sulfoxide. The sulfoxide could not be inserted into proteins, and the oxidation of l‐Met in proteins often leads to the loss of biological activity of the affected molecule. Key discoveries revealed the existence, in rats, of a metabolic pathway for the reduction of free l‐Met sulfoxide and, later, in Escherichia coli, of the enzymatic reduction of l‐Met sulfoxide inserted in proteins. Upon oxidation, the sulphur atom becomes a new stereogenic center, and two stable diastereoisomers of l‐Met sulfoxide exist. A fundamental discovery revealed the existence of two unrelated families of enzymes, MsrA and MsrB, whose members display opposite stereospecificity of reduction for the two sulfoxides. The importance of Msrs is additionally emphasized by the discovery that one of the only 25 selenoproteins expressed in humans is a Msr. The milestones on the road that led to the discovery and characterization of this group of antioxidant enzymes are recounted in this review.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application.

Cesare Achilli; S. Grandi; Annarita Ciana; Gianni F. Guidetti; Alessandro Malara; Vittorio Abbonante; Laura Cansolino; Corrado Tomasi; Alessandra Balduini; Maurizio Fagnoni; Daniele Merli; Piercarlo Mustarelli; Ilaria Canobbio; Cesare Balduini; Giampaolo Minetti

UNLABELLED Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. FROM THE CLINICAL EDITOR Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies.


Molecular Membrane Biology | 2014

Membrane rafts of the human red blood cell.

Annarita Ciana; Cesare Achilli; Giampaolo Minetti

Abstract The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte’s, could be relevant also for other cell types.


Frontiers in Physiology | 2014

Neocytolysis: none, one or many? A reappraisal and future perspectives

Angela Risso; Annarita Ciana; Cesare Achilli; Guglielmo Antonutto; Giampaolo Minetti

Neocytolysis is the hypothesis formulated to explain experimental evidence of selective lysis of young red blood cells (RBCs) (neocytes) associated with decreased plasma levels of erythropoietin (EPO). In humans, it appears to take place whenever a fast RBC mass reduction is required, i.e., in astronauts during the first days of spaceflight under weightlessness, where a fast reduction in plasma volume and increase in haematocrit occur. EPO plasma levels then decline and a decrease in RBC mass takes place, apparently because of the selective lysis of the youngest, recently generated RBCs (neocytes). The same process seems to occur in people descending to sea level after acclimatization at high altitude. After descent, the polycythaemia developed at high altitude must be abrogated, and a rapid reduction in the number of circulating RBCs is obtained by a decrease in EPO synthesis and the lysis of what seem to be young RBCs. In vivo, neocytolysis seems to be abolished by EPO administration. More recent research has ascribed to neocytolysis the RBC destruction that occurs under such disparate pathophysiologic conditions as nephropathy, severe obstructive pulmonary disease, blood doping, and even malaria anaemia. According to the theory, EPOs central role would be not only to stimulate the production of new RBCs in conditions of anaemia, as maintained by the orthodox view, but also that of a cytoprotective factor for circulating young RBCs. Why neocytes are specifically destroyed and how is this related to decreased EPO levels has not yet been elucidated. Changes in membrane molecules of young RBCs isolated from astronauts or mountain climbers upon return to normal conditions seem to indicate a higher susceptibility of neocytes to ingestion by macrophages. By limiting the context to space missions and high altitude expeditions, this review will address unresolved and critical issues that in our opinion have not been sufficiently highlighted in previous works.


Cellular Physiology and Biochemistry | 2014

Survival and senescence of human young red cells in vitro.

Angela Risso; Annarita Ciana; Cesare Achilli; Giampaolo Minetti

Background: A number of experimental investigations in vivo suggest that in humans a decrease of circulating erythrocyte number ensues whenever erythropoietin (EPO) plasma level decreases. Since the process seems to selectively eliminate young red cells (neocytes), it has been named neocytolysis. The experimental models in vivo have revealed and documented multiple forms of neocytolysis but have not fully elucidated the specificity of the target red cells and the relation with EPO level changes. In an attempt to better characterize the neocytolytic process, we have undertaken an in vitro investigation on age-ranked human red cells. Methods: By centrifugation on Percoll density gradient we separated the red cells population into three subsets, neocytes, middle-aged and old. Then we comparatively investigated the kinetics of survival of the subsets cultured under different conditions: with medium alone, with 10% autologous plasma, with EPO, alone or in combination with autologous monocytes. Results: Neocytes showed a viability and a survival rate lower than the other red cells when cultured in medium or with 10% plasma. EPO at physiological doses increased their survival rate, but not that of the other subsets. This effect was enhanced by co-culture with monocytes. Conclusion: Likely neocytes are more sensitive than the other RBCs subsets to presence or absence of survival signals, such as EPO or plasma or monocytes derived factors. These observations could provide an insight into the link between the decrease in EPO plasma level and the reduction of circulating red cells mass and account for the specificity of neocytes clearance.


Central European Journal of Chemistry | 2013

Susceptibility to hydrolysis of phenylboronic pinacol esters at physiological pH

Cesare Achilli; Annarita Ciana; Maurizio Fagnoni; Cesare Balduini; Giampaolo Minetti

AbstractBoronic acids and their esters are highly considered compounds for the design of new drugs and drug delivery devices, particularly as boron-carriers suitable for neutron capture therapy. However, these compounds are only marginally stable in water. Hydrolysis of some phenylboronic pinacol esters is described here. The kinetics is dependent on the substituents in the aromatic ring. Also the pH strongly influences the rate of the reaction, which is considerably accelerated at physiological pH. Therefore, care must be taken when considering these boronic pinacol esters for pharmacological purposes.


Journal of Sol-Gel Science and Technology | 2012

Synthesis and characterisation of functionalized borosilicate nanoparticles for boron neutron capture therapy applications

S. Grandi; Alberto Spinella; Corrado Tomasi; G. Bruni; Maurizio Fagnoni; Daniele Merli; Piercarlo Mustarelli; Gianni F. Guidetti; Cesare Achilli; Cesare Balduini

Boron Neutron Capture Therapy (BNCT) is a promising therapy for the cure of diffuse tumors. The successful clinical application of BNCT requires finding new boron-based compounds suitable for an efficient 10B delivery to the cancerous tissues. The purpose of this work is to synthesize borosilicate nanoparticles by a sol–gel recipe, and to functionalize them with folic acid in order to promote their capture by the tumor cells. Whereas sol–gel is a promising technique for the synthesis of nanoparticles, in case of borosilicate systems this approach is affected by significant boron loss during preparation. Here we show that functionalization of borosilicate nanoparticles with folic acid can reduce the boron loss. Moreover, preliminary biocompatibility tests indicate that functionalization strongly changes the reactivity of NPs towards blood cells, so favouring the potential use of these materials for clinical applications.

Collaboration


Dive into the Cesare Achilli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge