Cesare Grazioli
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cesare Grazioli.
Journal of Physics B | 2013
Victor Lyamayev; Y. Ovcharenko; R. Katzy; Michele Devetta; Lukas Bruder; A. C. LaForge; M. Mudrich; Ulrich Person; F. Stienkemeier; Maria Krikunova; T. Möller; P. Piseri; L. Avaldi; M. Coreno; P. O’Keeffe; P. Bolognesi; Michele Alagia; A. Kivimäki; Michele Di Fraia; Nils Benedict Brauer; Marcel Drabbels; T. Mazza; Stefano Stranges; P. Finetti; Cesare Grazioli; Oksana Plekan; R. Richter; Kevin C. Prince; C. Callegari
The low density matter end-station at the new seeded free electron laser FERMI@Elettra is a versatile instrument for the study of atoms, molecules and clusters by means of electron and ion spectroscopies. Beams of atoms, molecules and helium droplets as well as clusters of atoms, molecules and metals can be produced by three different pulsed valves. The atomic and molecular beams may be seeded, and the clusters and droplets may be pure, or doped with other atoms and molecules. The electrons and ions produced by the ionization and fragmentation of the samples by the intense light of FERMI can be analysed by the available spectrometers, to give mass spectra and energy as well as angular distributions of charged particles. The design of the detector allows simultaneous detection of electrons and ions using velocity map imaging and time-of-flight techniques respectively. The instruments have a high energy/mass resolution and large solid-angle collection efficiency. We describe the current status of the apparatus and illustrate the potential for future experiments.
Nature Communications | 2014
T. Mazza; M. Ilchen; A.J. Rafipoor; C. Callegari; P. Finetti; Oksana Plekan; Kevin C. Prince; R. Richter; M.B. Danailov; Alexander Demidovich; G. De Ninno; Cesare Grazioli; R. Ivanov; N. Mahne; Lorenzo Raimondi; Cristian Svetina; L. Avaldi; P. Bolognesi; M. Coreno; Patrick O'Keeffe; M. Di Fraia; Michele Devetta; Y. Ovcharenko; Th. Möller; V. Lyamayev; F. Stienkemeier; S. Düsterer; K. Ueda; John T. Costello; A. K. Kazansky
Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.
Journal of Physical Chemistry A | 2014
Iulia Emilia Brumboiu; Roberta Totani; Monica de Simone; M. Coreno; Cesare Grazioli; L. Lozzi; Heike C. Herper; Biplab Sanyal; Olle Eriksson; Carla Puglia; Barbara Brena
To shed light on the metal 3d electronic structure of manganese phthalocyanine, so far controversial, we performed photoelectron measurements both in the gas phase and as thin film. With the purpose of explaining the experimental results,three different electronic configurations close in energy to one another were studied by means of density functional theory. The comparison between the calculated valence band density of states and the measured spectra revealed that in the gas phase the molecules exhibit a mixed electronic configuration, while in the thin film, manganese phthalocyanine finds itself in the theoretically computed ground state, namely, the b1(2g)e3(g)a1(1g)b0(1g) electronic configuration.
Scientific Reports | 2015
A. C. LaForge; Marcel Drabbels; Nils Benedict Brauer; M. Coreno; Michele Devetta; M. Di Fraia; P. Finetti; Cesare Grazioli; R. Katzy; V. Lyamayev; T. Mazza; M. Mudrich; Patrick O'Keeffe; Y. Ovcharenko; P. Piseri; Oksana Plekan; Kevin C. Prince; R. Richter; Stefano Stranges; C. Callegari; T. Möller; F. Stienkemeier
Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields.
Review of Scientific Instruments | 2014
Cesare Grazioli; C. Callegari; A. Ciavardini; M. Coreno; Fabio Frassetto; D. Gauthier; D. Golob; R. Ivanov; A. Kivimäki; B. Mahieu; Bojan Bucar; Miran Merhar; Paolo Miotti; L. Poletto; E. Polo; Barbara Ressel; C. Spezzani; G. De Ninno
We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10(5)-10(8) photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10(12)-10(15) photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.
Journal of Synchrotron Radiation | 2015
Cristian Svetina; Cesare Grazioli; N. Mahne; Lorenzo Raimondi; Claudio Fava; Marco Zangrando; Simone Gerusina; Michele Alagia; L. Avaldi; G. Cautero; Monica de Simone; Michele Devetta; Michele Di Fraia; Marcel Drabbels; Vitaliy Feyer; P. Finetti; R. Katzy; A. Kivimäki; V. Lyamayev; T. Mazza; Angelica Moise; T. Möller; Patrick O'Keeffe; Y. Ovcharenko; P. Piseri; Oksana Plekan; Kevin C. Prince; Rudi Sergo; F. Stienkemeier; Stefano Stranges
A description of the LDM beamline of FERMI is given, with a detailed description of the photon transport.
Journal of Chemical Physics | 2015
Michael H. Palmer; Trevor Ridley; Søren V. Hoffmann; Nykola C. Jones; M. Coreno; Monica de Simone; Cesare Grazioli; Malgorzata Biczysko; Alberto Baiardi
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X(2)B1<A(2)A2<B(2)B2<C(2)B1. Although it is convenient to retain C2v labelling, there is an evidence that minor distortion to CS symmetry occurs at the MCSCF level for the C state. The fifth ionization process shown to be D(2)A1 exhibits dissociation to C6H5 (+) + I both in the experimental and theoretical studies. The calculated Franck-Condon vibrational spectral envelopes, including hot band contributions, for the first four ionic states reproduce the observed peak positions and intensities with reasonable accuracy. In order to simulate the observed spectra, different bandwidths are required for different states. The increase in the required bandwidths for the A(2)A2 and B(2)B2 states is attributed to internal conversion to lower-lying states. The presence of relatively high intensity sequence bands leads to asymmetry of each of the X(2)B1 state bands.
Journal of Chemical Physics | 2015
Michael H. Palmer; Trevor Ridley; Søren V. Hoffmann; Nykola C. Jones; M. Coreno; Monica de Simone; Cesare Grazioli; Malgorzata Biczysko; Alberto Baiardi; P. Limão-Vieira
Identification of many Rydberg states in iodobenzene, especially from the first and fourth ionization energies (IE1 and IE4, X(2)B1 and C(2)B1), has become possible using a new ultraviolet (UV) and vacuum-ultraviolet (VUV) absorption spectrum, in the region 29 000-87 000 cm(-1) (3.60-10.79 eV), measured at room temperature with synchrotron radiation. A few Rydberg states based on IE2 (A(2)A2) were found, but those based on IE3 (B(2)B2) are undetectable. The almost complete absence of observable Rydberg states relating to IE2 and IE3 (A(2)A2 and B(2)B2, respectively) is attributed to them being coupled to the near-continuum, high-energy region of Rydberg series converging on IE1. Theoretical studies of the UV and VUV spectra used both time-dependent density functional (TDDFT) and multi-reference multi-root doubles and singles-configuration interaction methods. The theoretical adiabatic excitation energies, and their corresponding vibrational profiles, gave a satisfactory interpretation of the experimental results. The calculations indicate that the UV onset contains both 1(1)B1 and 1(1)B2 states with very low oscillator strength, while the 2(1)B1 state was found to lie under the lowest ππ(∗) 1(1)A1 state. All three of these (1)B1 and (1)B2 states are excitations into low-lying σ(∗) orbitals. The strongest VUV band near 7 eV contains two very strong ππ(∗) valence states, together with other weak contributors. The lowest Rydberg 4b16s state (3(1)B1) is very evident as a sharp multiplet near 6 eV; its position and vibrational structure are well reproduced by the TDDFT results.
Journal of Chemical Physics | 2013
Ieva Bidermane; Johann Lüder; S. Boudet; Teng Zhang; Sareh Ahmadi; Cesare Grazioli; Marcel Bouvet; Jan Rusz; Biplab Sanyal; Olle Eriksson; Barbara Brena; Carla Puglia; Nadine Witkowski
Using Near Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy, the thickness dependent formation of Lutetium Phthalocyanine (LuPc2) films on a stepped passivated Si(100)2×1 reconstructed surface was studied. Density functional theory (DFT) calculations were employed to gain detailed insights into the electronic structure. Photoelectron spectroscopy measurements have not revealed any noticeable interaction of LuPc2 with the H-passivated Si surface. The presented study can be considered to give a comprehensive description of the LuPc2 molecular electronic structure. The DFT calculations reveal the interaction of the two molecular rings with each other and with the metallic center forming new kinds of orbitals in between the phthalocyanine rings, which allows to better understand the experimentally obtained NEXAFS results.
Journal of Chemical Physics | 2015
Johann Lüder; Monica de Simone; Roberta Totani; M. Coreno; Cesare Grazioli; Biplab Sanyal; Olle Eriksson; Barbara Brena; Carla Puglia
In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction with hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.