Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cevayir Coban is active.

Publication


Featured researches published by Cevayir Coban.


Nature Immunology | 2004

Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6

Taro Kawai; Shintaro Sato; Ken J. Ishii; Cevayir Coban; Hiroaki Hemmi; Masahiro Yamamoto; Kenta Terai; Michiyuki Matsuda; Jun-ichiro Inoue; Satoshi Uematsu; Osamu Takeuchi; Shizuo Akira

Toll-like receptors (TLRs) are involved in the recognition of microbial pathogens. A subset of TLRs, TLR7, TLR8 and TLR9, induces antiviral responses by producing interferon-α (IFN-α). Production of IFN-α is dependent on the Toll–interleukin-1 receptor domain–containing adaptor MyD88. Here we show that MyD88 formed a complex with the transcription factor IRF7 but not with IRF3. The death domain of MyD88 interacted with an inhibitory domain of IRF7, and this interaction resulted in activation of the IFN-α-dependent promoters. Furthermore, the adaptor molecule TRAF6 also bound and activated IRF7. Ubiquitin ligase activity of TRAF6 was required for IRF7 activation. These results indicate that TLR-mediated IFN-α induction requires the formation of a complex consisting of MyD88, TRAF6 and IRF7 as well as TRAF6-dependent ubiquitination.


Nature Immunology | 2006

A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA

Ken J. Ishii; Cevayir Coban; Hiroki Kato; Ken Takahashi; Yuichi Torii; Fumihiko Takeshita; Holger Ludwig; Gerd Sutter; Koichi Suzuki; Hiroaki Hemmi; Shintaro Sato; Masahiro Yamamoto; Satoshi Uematsu; Taro Kawai; Osamu Takeuchi; Shizuo Akira

The innate immune system recognizes nucleic acids during infection or tissue damage; however, the mechanisms of intracellular recognition of DNA have not been fully elucidated. Here we show that intracellular administration of double-stranded B-form DNA (B-DNA) triggered antiviral responses including production of type I interferons and chemokines independently of Toll-like receptors or the helicase RIG-I. B-DNA activated transcription factor IRF3 and the promoter of the gene encoding interferon-β through a signaling pathway that required the kinases TBK1 and IKKi, whereas there was substantial activation of transcription factor NF-κB independent of both TBK and IKKi. IPS-1, an adaptor molecule linking RIG-I and TBK1, was involved in B-DNA-induced activation of interferon-β and NF-κB. B-DNA signaling by this pathway conferred resistance to viral infection in a way dependent on both TBK1 and IKKi. These results suggest that both TBK1 and IKKi are required for innate immune activation by B-DNA, which might be important in antiviral innate immunity and other DNA-associated immune disorders.*Note: In the version of this article initially published, the GEO database accession number is missing. This should be the final subsection of Methods, as follows: code. GEO: microarray data, GSE4171. The error has been corrected in the PDF version of the article.


Journal of Experimental Medicine | 2005

Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin

Cevayir Coban; Ken J. Ishii; Taro Kawai; Hiroaki Hemmi; Shintaro Sato; Satoshi Uematsu; Masahiro Yamamoto; Osamu Takeuchi; Sawako Itagaki; Nirbhay Kumar; Toshihiro Horii; Shizuo Akira

Malaria parasites within red blood cells digest host hemoglobin into a hydrophobic heme polymer, known as hemozoin (HZ), which is subsequently released into the blood stream and then captured by and concentrated in the reticulo-endothelial system. Accumulating evidence suggests that HZ is immunologically active, but the molecular mechanism(s) through which HZ modulates the innate immune system has not been elucidated. This work demonstrates that HZ purified from Plasmodium falciparum is a novel non-DNA ligand for Toll-like receptor (TLR)9. HZ activated innate immune responses in vivo and in vitro, resulting in the production of cytokines, chemokines, and up-regulation of costimulatory molecules. Such responses were severely impaired in TLR9−/− and myeloid differentiation factor 88 (MyD88)−/−, but not in TLR2, TLR4, TLR7, or Toll/interleukin 1 receptor domain–containing adaptor-inducing interferon β−/− mice. Synthetic HZ, which is free of the other contaminants, also activated innate immune responses in vivo in a TLR9-dependent manner. Chloroquine (CQ), an antimalarial drug, abrogated HZ-induced cytokine production. These data suggest that TLR9-mediated, MyD88-dependent, and CQ-sensitive innate immune activation by HZ may play an important role in malaria parasite–host interactions.


Nature | 2008

TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines

Ken J. Ishii; Tatsukata Kawagoe; Shohei Koyama; Kosuke Matsui; Himanshu Kumar; Taro Kawai; Satoshi Uematsu; Osamu Takeuchi; Fumihiko Takeshita; Cevayir Coban; Shizuo Akira

Successful vaccines contain not only protective antigen(s) but also an adjuvant component that triggers innate immune activation and is necessary for their optimal immunogenicity. In the case of DNA vaccines, this consists of plasmid DNA; however, the adjuvant element(s) as well as its intra- and inter-cellular innate immune signalling pathway(s) leading to the encoded antigen-specific T- and B-cell responses remain unclear. Here we demonstrate in vivo that TANK-binding kinase 1 (TBK1), a non-canonical IκB kinase, mediates the adjuvant effect of DNA vaccines and is essential for its immunogenicity in mice. Plasmid-DNA-activated, TBK1-dependent signalling and the resultant type-I interferon receptor-mediated signalling was required for induction of antigen-specific B and T cells, which occurred even in the absence of innate immune signalling through a well known CpG DNA sensor—Toll-like receptor 9 (TLR9) or Z-DNA binding protein 1 (ZBP1, also known as DAI, which was recently reported as a potential B-form DNA sensor). Moreover, bone-marrow-transfer experiments revealed that TBK1-mediated signalling in haematopoietic cells was critical for the induction of antigen-specific B and CD4+ T cells, whereas in non-haematopoietic cells TBK1 was required for CD8+ T-cell induction. These data suggest that TBK1 is a key signalling molecule for DNA-vaccine-induced immunogenicity, by differentially controlling DNA-activated innate immune signalling through haematopoietic and non-haematopoietic cells.


Journal of Experimental Medicine | 2005

Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction

Satoshi Uematsu; Shintaro Sato; Masahiro Yamamoto; Tomonori Hirotani; Hiroki Kato; Fumihiko Takeshita; Michiyuki Matsuda; Cevayir Coban; Ken J. Ishii; Taro Kawai; Osamu Takeuchi; Shizuo Akira

Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs.


Journal of Experimental Medicine | 2006

Essential role of IPS-1 in innate immune responses against RNA viruses

Himanshu Kumar; Taro Kawai; Hiroki Kato; Shintaro Sato; Ken Takahashi; Cevayir Coban; Masahiro Yamamoto; Satoshi Uematsu; Ken J. Ishii; Osamu Takeuchi; Shizuo Akira

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


Nature Immunology | 2006

Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells

Satoshi Uematsu; Myoung Ho Jang; Nicolas Chevrier; Zijin Guo; Yutaro Kumagai; Masahiro Yamamoto; Hiroki Kato; Nagako Sougawa; Hidenori Matsui; Hirotaka Kuwata; Hiroaki Hemmi; Cevayir Coban; Taro Kawai; Ken J. Ishii; Osamu Takeuchi; Masayuki Miyasaka; Kiyoshi Takeda; Shizuo Akira

Toll-like receptors (TLRs) recognize distinct microbial components and induce innate immune responses. TLR5 is triggered by bacterial flagellin. Here we generated Tlr5−/− 1mice and assessed TLR5 function in vivo. Unlike other TLRs, TLR5 was not expressed on conventional dendritic cells or macrophages. In contrast, TLR5 was expressed mainly on intestinal CD11c+ lamina propria cells (LPCs). CD11c+ LPCs detected pathogenic bacteria and secreted proinflammatory cytokines in a TLR5-dependent way. However, CD11c+ LPCs do not express TLR4 and did not secrete proinflammatory cytokines after exposure to a commensal bacterium. Notably, transport of pathogenic Salmonella typhimurium from the intestinal tract to mesenteric lymph nodes was impaired in Tlr5−/− mice. These data suggest that CD11c+ LPCs, via TLR5, detect and are used by pathogenic bacteria in the intestinal lumen.


Journal of Immunology | 2007

Differential Role of TLR- and RLR-Signaling in the Immune Responses to Influenza A Virus Infection and Vaccination

Shohei Koyama; Ken J. Ishii; Himanshu Kumar; Takeshi Tanimoto; Cevayir Coban; Satoshi Uematsu; Taro Kawai; Shizuo Akira

The innate immune system recognizes influenza A virus via TLR 7 or retinoic acid-inducible gene I in a cell-type specific manner in vitro, however, physiological function(s) of the MyD88- or interferon-β promoter stimulator 1 (IPS-1)-dependent signaling pathways in antiviral responses in vivo remain unclear. In this study, we show that although either MyD88- or IPS-1-signaling pathway was sufficient to control initial antiviral responses to intranasal influenza A virus infection, mice lacking both pathways failed to show antiviral responses, resulting in increased viral load in the lung. By contrast, induction of B cells or CD4 T cells specific to the dominant hemagglutinin or nuclear protein Ags respectively, was strictly dependent on MyD88 signaling, but not IPS-1 signaling, whereas induction of nuclear protein Ag-specific CD8 T cells was not impaired in the absence of either MyD88 or IPS-1. Moreover, vaccination of TLR7- and MyD88-deficient mice with inactivated virus failed to confer protection against a lethal live virus challenge. These results strongly suggest that either the MyD88 or IPS-1 signaling pathway is sufficient for initial antiviral responses, whereas the protective adaptive immune responses to influenza A virus are governed by the TLR7-MyD88 pathway.


Journal of Immunology | 2001

Genomic DNA Released by Dying Cells Induces the Maturation of APCs

Ken J. Ishii; Koichi Suzuki; Cevayir Coban; Fumihiko Takeshita; Yasushi Itoh; Hana Matoba; Leonard D. Kohn; Dennis M. Klinman

Mature APCs play a key role in the induction of Ag-specific immunity. This work examines whether genomic DNA released by dying cells provides a stimulus for APC maturation. Double-stranded but not single-stranded genomic DNA triggered APC to up-regulate expression of MHC class I/II and various costimulatory molecules. Functionally, dsDNA enhanced APC function in vitro and improved primary cellular and humoral immune responses in vivo. These effects were dependent on the length and concentration of the dsDNA but were independent of nucleotide sequence. The maturation of APC induced by dsDNA may promote host survival by improving immune surveillance at sites of tissue injury/infection.


Cytokine | 2008

Innate immune response to viral infection

Shohei Koyama; Ken J. Ishii; Cevayir Coban; Shizuo Akira

In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation.

Collaboration


Dive into the Cevayir Coban's collaboration.

Top Co-Authors

Avatar

Patrick M. Lelliott

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Brendan J. McMorran

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Gaetan Burgio

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Hong Ming Huang

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Simon J. Foote

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arman Namvar

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar

Leann Tilley

Biotechnology Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge