Cezar M. Khursigara
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cezar M. Khursigara.
Science | 2006
Peter D. Pawelek; Nathalie Croteau; Christopher Ng-Thow-Hing; Cezar M. Khursigara; Natalia Moiseeva; Marc Allaire; James W. Coulton
The cytoplasmic membrane protein TonB spans the periplasm of the Gram-negative bacterial cell envelope, contacts cognate outer membrane receptors, and facilitates siderophore transport. The outer membrane receptor FhuA from Escherichia coli mediates TonB-dependent import of ferrichrome. We report the 3.3 angstrom resolution crystal structure of the TonB carboxyl-terminal domain in complex with FhuA. TonB contacts stabilize FhuAs amino-terminal residues, including those of the consensus Ton box sequence that form an interprotein β sheet with TonB through strand exchange. The highly conserved TonB residue arginine-166 is oriented to form multiple contacts with the FhuA cork, the globular domain enclosed by the β barrel.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Peijun Zhang; Cezar M. Khursigara; Lisa M. Hartnell; Sriram Subramaniam
Signal transduction in bacterial chemotaxis is initiated by the binding of extracellular ligands to a specialized family of methyl-accepting chemoreceptor proteins. Chemoreceptors cluster at distinct regions of the cell and form stable ternary complexes with the histidine autokinase CheA and the adapter protein CheW. Here we report the direct visualization and spatial organization of chemoreceptor arrays in intact Escherichia coli cells by using cryo-electron tomography and biochemical techniques. In wild-type cells, ternary complexes are arranged as an extended lattice, which may or may not be ordered, with significant variations in the size and specific location among cells in the same population. In the absence of CheA and CheW, chemoreceptors do not form observable clusters and are diffusely localized to the cell pole. At disproportionately high receptor levels, membrane invaginations containing nonfunctional, axially interacting receptor assemblies are formed. However, functional chemoreceptor arrays can be reestablished by increasing cellular levels of CheA and CheW. Our results demonstrate that chemotaxis in E. coli requires the presence of chemoreceptor arrays and that the formation of these arrays requires the scaffolding interactions of the signaling molecules CheA and CheW.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Cezar M. Khursigara; Xiongwu Wu; Peijun Zhang; Jonathan Lefman; Sriram Subramaniam
Bacterial chemoreceptors undergo conformational changes in response to variations in the concentration of extracellular ligands. These changes in chemoreceptor structure initiate a series of signaling events that ultimately result in regulation of rotation of the flagellar motor. Here we have used cryo-electron tomography combined with 3D averaging to determine the in situ structure of chemoreceptor assemblies in Escherichia coli cells that have been engineered to overproduce the serine chemoreceptor Tsr. We demonstrate that chemoreceptors are organized as trimers of receptor dimers and display two distinct conformations that differ principally in arrangement of the HAMP domains within each trimer. Ligand binding and methylation alter the distribution of chemoreceptors between the two conformations, with serine binding favoring the “expanded” conformation and chemoreceptor methylation favoring the “compact” conformation. The distinct positions of chemoreceptor HAMP domains within the context of a trimeric unit are thus likely to represent important aspects of chemoreceptor structural changes relevant to chemotaxis signaling. Based on these results, we propose that the compact and expanded conformations represent the “kinase-on” and “kinase-off” states of chemoreceptor trimers, respectively.
Journal of Bacteriology | 2008
Cezar M. Khursigara; Xiongwu Wu; Sriram Subramaniam
Chemoreceptor arrays are macromolecular complexes that form extended assemblies primarily at the poles of bacterial cells and mediate chemotaxis signal transduction, ultimately controlling cellular motility. We have used cryo-electron tomography to determine the spatial distribution and molecular architecture of signaling molecules that comprise chemoreceptor arrays in wild-type Caulobacter crescentus cells. We demonstrate that chemoreceptors are organized as trimers of receptor dimers, forming partially ordered hexagonally packed arrays of signaling complexes in the cytoplasmic membrane. This novel organization at the threshold between order and disorder suggests how chemoreceptors and associated molecules are arranged in signaling assemblies to respond dynamically in the activation and adaptation steps of bacterial chemotaxis.
Journal of Microbiological Methods | 2013
Julie A.K. McDonald; Kathleen Schroeter; Susana Fuentes; Ineke Heikamp-deJong; Cezar M. Khursigara; Willem M. de Vos; Emma Allen-Vercoe
In vitro gut models provide several advantages over in vivo models for the study of the human gut microbiota. However, because communities developed in these models are inevitably simplified simulations of the in vivo environment, it is necessary to broadly define the differences between in vitro consortia and the communities from which they are derived. In this study we characterized microbial community development in a twin-vessel single-stage chemostat model of the human distal gut ecosystem using both gel (Denaturing Gradient Gel Electrophoresis) and phylogenetic microarray (Human Intestinal Tract Chip) based techniques. Five different sets of twin-vessels were inoculated with feces from three different healthy adult donors and allowed to reach steady state compositions. We found that twin-vessel single-stage chemostats could develop and maintain stable, diverse, and reproducible communities that reach steady state compositions in all five runs by at most 36 days post-inoculation. As noted in other in vitro studies, steady state communities were enriched in Bacteroidetes but not Clostridium cluster XIVa, Bacilli or other Firmicutes relative to the fecal inocula. Communities developed within this model had higher within-run reproducibility than between-run repeatability when using consecutive fecal donations. Both fecal inocula and steady state chemostat communities seeded with feces from different donors had distinct compositions. We conclude that twin-vessel single-stage chemostat models represent a valid simulation of the human distal gut environment and can support complex, representative microbial communities ideal for experimental manipulation.
Journal of Bacteriology | 2014
Kathleen Murphy; Amber J. Park; Youai Hao; Dyanne Brewer; Joseph S. Lam; Cezar M. Khursigara
Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development.
Antimicrobial Agents and Chemotherapy | 2014
Marc B. Habash; Amber J. Park; Emily C. Vis; Robert Harris; Cezar M. Khursigara
ABSTRACT Pathogenic bacterial biofilms, such as those found in the lungs of patients with cystic fibrosis (CF), exhibit increased antimicrobial resistance, due in part to the inherent architecture of the biofilm community. The protection provided by the biofilm limits antimicrobial dispersion and penetration and reduces the efficacy of antibiotics that normally inhibit planktonic cell growth. Thus, alternative antimicrobial strategies are required to combat persistent infections. The antimicrobial properties of silver have been known for decades, but silver and silver-containing compounds have recently seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the efficacy of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the monobactam antibiotic aztreonam, to inhibit Pseudomonas aeruginosa PAO1 biofilms. Among the different sizes of AgNPs examined, 10-nm nanoparticles were most effective in inhibiting the recovery of P. aeruginosa biofilm cultures and showed synergy of inhibition when combined with sub-MIC levels of aztreonam. Visualization of biofilms treated with combinations of 10-nm AgNPs and aztreonam indicated that the synergistic bactericidal effects are likely caused by better penetration of the small AgNPs into the biofilm matrix, which enhances the deleterious effects of aztreonam against the cell envelope of P. aeruginosa within the biofilms. These data suggest that small AgNPs synergistically enhance the antimicrobial effects of aztreonam against P. aeruginosa in vitro, and they reveal a potential role for combinations of small AgNPs and antibiotics in treating patients with chronic infections.
Journal of Biological Chemistry | 2004
Cezar M. Khursigara; Gregory De Crescenzo; Peter D. Pawelek; James W. Coulton
The ferric hydroxymate uptake (FhuA) receptor from Escherichia coli facilitates transport of siderophores ferricrocin and ferrichrome and siderophore-antibiotic conjugates such as albomycin and rifamycin CGP 4832. FhuA is also the receptor for phages T5, T1, Φ80, UC-1, for colicin M and for the antimicrobial peptide microcin MccJ21. Energy for transport is provided by the cytoplasmic membrane complex TonB·ExbB·ExbD, which uses the proton motive force of the cytoplasmic membrane to transduce energy to the outer membrane. To accomplish energy transfer, TonB contacts outer membrane receptors. However, the stoichiometry of TonB· receptor complexes and their sites of interaction remain uncertain. In this study, analyses of FhuA interactions with two recombinant TonB proteins by analytical ultracentrifugation revealed that TonB forms a 2:1 complex with FhuA. The presence of the FhuA-specific ligand ferricrocin enhanced the amounts of complex but is not essential for its formation. Surface plasmon resonance experiments demonstrated that FhuA·TonB interactions are multiple and have apparent affinities in the nanomolar range. TonB also possesses two distinct binding regions: one in the C terminus of the protein, for which binding to FhuA is ferricrocin-independent, and a higher affinity region outside the C terminus, for which ferricrocin enhances interactions with FhuA. Together these experiments establish that FhuA·TonB interactions are more intricate than originally predicted, that the TonB·FhuA stoichiometry is 2:1, and that ferricrocin modulates binding of FhuA to TonB at regions outside the C-terminal domain of TonB.
Molecular & Cellular Proteomics | 2014
Amber J. Park; Kathleen Murphy; Jonathan R. Krieger; Dyanne Brewer; Paul Taylor; Marc B. Habash; Cezar M. Khursigara
Chronic polymicrobial lung infections are the chief complication in patients with cystic fibrosis. The dominant pathogen in late-stage disease is Pseudomonas aeruginosa, which forms recalcitrant, structured communities known as biofilms. Many aspects of biofilm biology are poorly understood; consequently, effective treatment of these infections is limited, and cystic fibrosis remains fatal. Here we combined in-solution protein digestion of triplicate growth-matched samples with a high-performance mass spectrometry platform to provide the most comprehensive proteomic dataset known to date for whole cell P. aeruginosa PAO1 grown in biofilm cultures. Our analysis included protein–protein interaction networks and PseudoCAP functional information for unique and significantly modulated proteins at three different time points. Secondary analysis of a subgroup of proteins using extracted ion currents validated the spectral counting data of 1884 high-confidence proteins. In this paper we demonstrate a greater representation of proteins related to metabolism, DNA stability, and molecular activity in planktonically grown P. aeruginosa PAO1. In addition, several virulence-related proteins were increased during planktonic growth, including multiple proteins encoded by the pyoverdine locus, uncharacterized proteins with sequence similarity to mammalian cell entry protein, and a member of the hemagglutinin family of adhesins, HecA. Conversely, biofilm samples contained an uncharacterized protein with sequence similarity to an adhesion protein with self-association characteristics (AidA). Increased levels of several phenazine biosynthetic proteins, an uncharacterized protein with sequence similarity to a metallo-beta-lactamase, and lower levels of the drug target gyrA support the putative characteristics of in situ P. aeruginosa infections, including competitive fitness and antibiotic resistance. This quantitative whole cell approach advances the existing P. aeruginosa subproteomes and provides a framework for identifying and studying entire pathways critical to biofilm biology in this model pathogenic organism. The identification of novel protein targets could contribute to the development of much needed antimicrobial therapies to treat the chronic infections found in patients with cystic fibrosis.
The EMBO Journal | 2011
Cezar M. Khursigara; Ganhui Lan; Silke Neumann; Xiongwu Wu; Suchie Ravindran; Mario J. Borgnia; Victor Sourjik; Jacqueline L. S. Milne; Yuhai Tu; Sriram Subramaniam
In chemotactic bacteria, transmembrane chemoreceptors, CheA and CheW form the core signalling complex of the chemotaxis sensory apparatus. These complexes are organized in extended arrays in the cytoplasmic membrane that allow bacteria to respond to changes in concentration of extracellular ligands via a cooperative, allosteric response that leads to substantial amplification of the signal induced by ligand binding. Here, we have combined cryo‐electron tomographic studies of the 3D spatial architecture of chemoreceptor arrays in intact E. coli cells with computational modelling to develop a predictive model for the cooperativity and sensitivity of the chemotaxis response. The predictions were tested experimentally using fluorescence resonance energy transfer (FRET) microscopy. Our results demonstrate that changes in lateral packing densities of the partially ordered, spatially extended chemoreceptor arrays can modulate the bacterial chemotaxis response, and that information about the molecular organization of the arrays derived by cryo‐electron tomography of intact cells can be translated into testable, predictive computational models of the chemotaxis response.