Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cha Young Kim is active.

Publication


Featured researches published by Cha Young Kim.


Plant Physiology | 2003

BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor

Yong Hwa Cheong; Byeong Cheol Moon; Jong Kyong Kim; Cha Young Kim; Min Chul Kim; Ihn Hyoung Kim; Chan Young Park; Jong Cheol Kim; Byung Ouk Park; Seong Cheol Koo; Hae Won Yoon; Woo Sik Chung; Chae Oh Lim; Sang Yeol Lee; Moo Je Cho

Mitogen-activated protein kinase (MAPK) cascades are known to transduce plant defense signals, but the downstream components of the MAPK have as yet not been elucidated. Here, we report an MAPK from rice (Oryza sativa), BWMK1, and a transcription factor, OsEREBP1, phosphorylated by the kinase. The MAPK carries a TDY phosphorylation motif instead of the more common TEY motif in its kinase domain and has an unusually extended C-terminal domain that is essential to its kinase activity and translocation to the nucleus. The MAPK phosphorylates OsEREBP1 that binds to the GCC box element (AGCCGCC) of the several basic pathogenesis-related gene promoters, which in turn enhances DNA-binding activity of the factor to the cis element in vitro. Transient co-expression of the BWMK1 and OsEREBP1 in Arabidopsis protoplasts elevates the expression of the β-glucuronidase reporter gene driven by the GCC box element. Furthermore, transgenic tobacco (Nicotiana tabacum) plants overexpressing BWMK1 expressed many pathogenesis-related genes at higher levels than wild-type plants with an enhanced resistance to pathogens. These findings suggest that MAPKs contribute to plant defense signal transduction by phosphorylating one or more transcription factors.


Molecular Plant-microbe Interactions | 2000

Identification of rice blast fungal elicitor-responsive genes by differential display analysis.

Cha Young Kim; Sung-Ho Lee; Hyeong Cheol Park; Chang Gyu Bae; Yong Hwa Cheong; Young Ju Choi; Chang-deok Han; Sang Yeol Lee; Chae Oh Lim; Moo Je Cho

In order to study molecular interactions that occur between rice and rice blast fungus upon infection, we isolated fungal elicitor-responsive genes from rice (Oryza sativa cv. Milyang 117) suspension-cultured cells treated with fungal elicitor prepared from the rice blast fungus (Magnaporthe grisea) employing a method that combined mRNA differential display and cDNA library screening. Data base searches with the isolated cDNA clones revealed that the OsERG1 and OsERG2 cDNAs share significant similarities with the mammalian Ca2+-dependent lipid binding (C2) domains. The OsCPX1 cDNA is highly homologous to peroxidases. The OsHin1 cDNA exhibits homology to the tobacco hin1 gene, whose expression is induced by avirulent pathogens. The OsLPL1 and OsMEK1 cDNAs share homologies with lysophospholipases and serine/threonine mitogen-activated protein (MAP) kinase kinases, respectively. The OsWRKY1 and OsEREBP1 cDNAs are homologous to transcription factors, such as the WRKY protein family and the AP2/EREBP family, respectively. Transcripts of the OsERG1, OsHin1, and OsMEK1 genes were specifically elevated only in response to the avirulent race KJ301 of the rice blast fungus. Our study yielded a number of elicitor-responsive genes that will not only provide molecular probes, but also contribute to our understanding of host defense mechanisms against the rice blast fungus.


Plant Molecular Biology | 2002

Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage

Hyeong Cheol Park; Yun Hwan Kang; Hyun Jin Chun; Ja Choon Koo; Yong Hwa Cheong; Cha Young Kim; Min Chul Kim; Woo Sik Chung; Jong Cheol Kim; Jae Hyuk Yoo; Yoon Duck Koo; Sung Chul Koo; Chae Oh Lim; Sang Yeol Lee; Moo Je Cho

We isolated a stamen-specific cDNA, BSD1 (Brassica stamen specific plant defensin 1) that encodes a novel plant defensin peptide in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant defensins are antimicrobial peptides containing eight highly conserved cysteine residues linked by disulfide bridges. In BSD1, the eight cysteine residues and a glutamate residue at position 29 are conserved whereas other amino acid residues of the plant defensins consensus sequence are substituted. BSD1 transcripts accumulate specifically in the stamen of developing flowers and its level drops as the flowers mature. The recombinant BSD1 produced in Escherichia coli showed antifungal activity against several phytopathogenic fungi. Furthermore, constitutive over-expression of the BSD1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter conferred enhanced tolerance against the Phytophthora parasitica in the transgenic tobacco plants.


FEBS Letters | 2007

Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis

Sangmin Lee; Ho Soo Kim; Hay Ju Han; Byeong Cheol Moon; Cha Young Kim; Jeffery F. Harper; Woo Sik Chung

In plant cells, the vacuole functions as a major calcium store. Although a calmodulin‐regulated Ca2+‐ATPase (ACA4) is known to be present in prevacuolar compartments, the presence of an ACA‐type Ca2+‐ATPase in the mature vacuole of a plant cell has not been verified. Here we provide evidence that ACA11 localizes to the vacuole membrane. ACA11 tagged with GFP was expressed in stable transgenic plants, and visualized in root cells and protoplasts by confocal microscopy. A Ca2+‐ATPase function for ACA11 was confirmed by complementation of yeast mutants. A calmodulin binding domain was identified within the first 37 residues of the N‐terminal autoinhibitory region.


Plant Molecular Biology | 1998

A new class II rice chitinase, Rcht2, whose induction by fungal elicitor is abolished by protein phosphatase 1 and 2A inhibitor

Cha Young Kim; Sang Wan Gal; Mi Sook Choe; Sun Yong Jeong; Soo In Lee; Yong Hwa Cheong; Sang Hyoung Lee; Young Ju Choi; Chang-deok Han; Kyu Young Kang; Moo Je Cho

Among the four classes of chitinase, a class II chitinase had not yet been reported for rice. We have isolated and characterized a class II acidic chitinase, Rcht2, from rice (Oryza sativa L. cv. Cheongcheongbyeo). The protein consists of a single polypeptide chain of 261 amino acid residues and includes a putative signal sequence of 29 amino acids at its N-terminus. It has a calculated molecular mass of 27 642 Da and an isoelectric point of 5.56. The Rcht2 chitinase lacks the cysteine-rich and hinge domains in the N-terminal region of the protein, which is the criterion for its classification as a class II chitinase. Comparison of the genomic and the cDNA sequence revealed that the coding region of Rcht2 consist of three exons of 301, 112, and 370 bp separated by two introns of 89 and 984 bp. In suspension-cultured rice cells, the transcript level of Rcht2 was dramatically increased by treatment with both glycol chitin and fungal elicitor. The application of protein phosphatase 1 and 2A inhibitors, calyculin A and okadaic acid, effectively abolished the induction of Rcht2 in response to fungal elicitor. In contrast, the activation of Rcht2 transcript was not inhibited by both cycloheximide and protein kinase inhibitors. These results demonstrate that protein dephosphorylation events play a crucial role in the elicitor-mediated induction of Rcht2 in rice cells, while de novo protein synthesis is not required for induction.


Biochimica et Biophysica Acta | 1999

Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants

Sang Hyoung Lee; Min Chul Kim; Won Heo; Jong Cheol Kim; Woo Sik Chung; Chan Young Park; Hyeong Cheol Park; Yong Hwa Cheong; Cha Young Kim; Sung-Ho Lee; Kyung Joo Lee; Jeong Dong Bahk; Sang Yeol Lee; Moo Je Cho

In plants, multiple calmodulin (CaM) isoforms exist in an organism which vary in their primary structures in as much as 32 residues out of their 148 amino acids. These CaM isoforms show differences in their expression patterns and/or target enzyme activation ability. To further understand the biological significance of CaM isoforms, we examined whether CaM isoforms act on specific regulatory targets. In gel overlay assays on various soybean tissue extracts, surprisingly, two soybean CaM isoforms (SCaM-1 and SCaM-4) did not show significant differences in their target binding protein profiles, although they exhibited minor differences in their relative target binding affinities. In addition, both SCaM isoforms not only effectively bound five known plant CaMBPs, but also showed competitive binding to these proteins. Finally, immunolocalization experiments with the SCaM proteins in sections of various tissues using specific antibodies revealed similar distribution patterns for the SCaM isoforms except for root tissues, which indicates that the SCaM isoforms are concomitantly expressed in most plant tissues. These results suggest that CaM isoforms may compete for binding to CaMBPs in vivo. This competitive nature of CaM isoforms may allow modulation of Ca(2+)/CaM signaling pathways by virtue of relative abundance and differential target activation potency.


Biochemical and Biophysical Research Communications | 2009

OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33

Sung Cheol Koo; Byeong Cheol Moon; Jong Kyong Kim; Cha Young Kim; Sun Jin Sung; Min Chul Kim; Moo Je Cho; Yong Hwa Cheong

Mitogen-activated protein kinases (MAPKs) play important roles in responses to various environmental stresses. In a previous study, we demonstrated that OsBWMK1, which localizes in the nucleus, mediates PR gene expression by activating the OsEREBP1 transcription factor, and that the constitutive expression of OsBWMK1 also enhances resistance against pathogen infections [Y.H. Cheong, B.C. Moon, J.K. Kim, C.Y. Kim, M.C. Kim, I.H. Kim, C.Y. Park, J.C. Kim, B.O. Park, S.C. Koo, H.W. Yoon, W.S. Chung, C.O. Lim, S.Y. Lee, M.J. Cho, BWMK1, rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor, Plant Physiol. 132 (2003) 1961--1972]. Here, we report that OsBWMK1 phosphorylates OsWRKY33, which binds to the W-box element (TTGACCA) in several PR gene promoters, thereby enhancing DNA-binding activity of the factor to its in vitro cognate binding site. Transient coexpression of OsBWMK1 and OsWRKY33 in Arabidopsis protoplasts elevates SA-dependent expression of the GUS-reporter gene driven by the W-box element and the PR1 promoter. Furthermore, the levels of SA and H(2)O(2) are elevated in 35S-OsBWMK1 transgenic plants that show HR-like cell death. Altogether, OsBWMK1 may mediate SA-dependent defense responses by activating the WRKY transcription factor in plants.


Molecular Genetics and Genomics | 1997

Differential expression of two functional serine/threonine protein kinases from soyabean that have an unusual acidic domain at the carboxy terminus

Hae Won Yoon; Min Chul Kim; P. G. Shin; Jong-Shu Kim; Cha Young Kim; Sung-Ho Lee; Inhwan Hwang; Jeong Dong Bahk; Jong Chan Hong; Chang-deok Han; Moo Je Cho

Abstract Two soybean cDNA clones, SPK-3 and SPK-4, encoding putative protein kinases were isolated and characterized. Both cDNAs encoded approximately 40-kDa serine/threonine kinases with unusual stretches of acidic amino acids in their carboxy-terminal regions, which are highly homologous to PKABA1 from wheat and ASKs from Arabidopsis. These kinases are encoded by one- or two-copy genes in the soybean genome. Notably, SPK-3 and -4 showed different patterns of expression in various soybean tissues. SPK-3 is highly expressed in dividing and elongating tissues of young seedlings but relatively weakly in tissues of mature plants. In contrast, SPK-4 showed relatively high and constitutive expression in all the tissues examined except for leaf tissues of mature plants. Although various stressors, such as dehydration and high salinity, increased the expression of both genes, the induction kinetics were different. The two genes also differed in their response to abscisic acid (ABA). SPK-3 was induced but SPK-4 was not affected by exogenously supplied abscisic acid. In accordance with these expression data analysis of the activity of a chimeric SPK-3 promoter::β-glucuronidase (GUS) reporter gene by transient expression in tobacco leaves confirmed the inducibility of SPK-3 by salt and ABA. Polyclonal antibodies raised against a recombinant SPK-4 protein produced in Escherichia coli specifically recognized both recombinant SPK-3 and -4 proteins. Kinase assays using affinity-purified SPK-4/antibody complexes with crude soybean extracts as substrate identified specific phosphorylation of two 41 and 170 kDa soybean proteins that were phosphorylated on serine residues. Taken together, our results suggest that SPK-3, and/or SPK-4 are functional serine protein kinase(s). Furthermore, SPK-3 and -4 may play different roles in the transduction of various environmental stresses.


Physiologia Plantarum | 2015

Overexpression of the IbMYB1 gene in an orange‐fleshed sweet potato cultivar produces a dual‐pigmented transgenic sweet potato with improved antioxidant activity

Sung-Chul Park; Yun-Hee Kim; Sun Ha Kim; Yu Jeong Jeong; Cha Young Kim; Joon Seol Lee; Ji-Yeong Bae; Mi-Jeong Ahn; Jae Cheol Jeong; Haeng-Soon Lee; Sang-Soo Kwak

The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity.


Planta | 1999

Characterization of two fungal-elicitor-induced rice cDNAs encoding functional homologues of the rab-specific GDP-dissociation inhibitor

Woe Yeon Kim; Cha Young Kim; Na Eun Cheong; Yeon Ok Choi; Kyun Oh Lee; Sung-Ho Lee; Jae Bong Park; Akihiko Nakano; Jeong Dong Bahk; Moo Je Cho; Sang Yeol Lee

Abstract. By using the mRNA differential display approach to isolate defense signaling genes active at the early stage of fungal infection two cDNA fragments with high sequence homology to rab-specific GDP-dissociation inhibitors (GDIs) were identified in rice (Oryza sativa L.) suspension cells. Using polymerase-chain-reaction products as probes, two full-length cDNA clones were isolated from a cDNA library of fungal-elicitor-treated rice, and designated as OsGDI1 and OsGDI2. The deduced amino acid sequences of the isolated cDNAs exhibited substantial homology to Arabidopsis rab-GDIs. Northern analysis revealed that transcripts detected with the 3′-gene-specific DNA probes accumulated to high levels within 30 min after treatment with a fungal elicitor derived from Magnaporthe grisea. The functionality of the OsGDIs was demonstrated by their ability to rescue the Sec19 mutant of Saccharomyces cerevisiae which is defective in vesicle transport. The proteins, expressed in Escherchia coli, cross-reacted with a polyclonal antibody prepared against bovine rab-GDI. Like bovine rab-GDI, the OsGDI proteins efficiently dissociated rab3A from bovine synaptic membranes. Using the two-hybrid system, it was shown that the OsGDIs specifically interact with the small GTP-binding proteins belonging to the rab subfamily. The specific interaction was also demonstrated in vitro by glutathione S-transferase resin pull-down assay.

Collaboration


Dive into the Cha Young Kim's collaboration.

Top Co-Authors

Avatar

Moo Je Cho

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sang Yeol Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Yong Hwa Cheong

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Byeong Cheol Moon

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sung-Ho Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Woo Sik Chung

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Chae Oh Lim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Min Chul Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Chang-deok Han

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Chul Han An

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge