Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad C. Carroll is active.

Publication


Featured researches published by Chad C. Carroll.


Journal of Applied Physiology | 2008

Influence of aging on the in vivo properties of human patellar tendon

Chad C. Carroll; Jared M. Dickinson; Jacob M. Haus; Gary A. Lee; Christopher J Hollon; Per Aagaard; S. P. Magnusson; Todd A. Trappe

Tendons are important for optimal muscle force transfer to bone and play a key role in functional ability. Changes in tendon properties with aging could contribute to declines in physical function commonly associated with aging. We investigated the in vivo mechanical properties of the patellar tendon in 37 men and women [11 young (27 +/- 1 yr) and 26 old (65 +/- 1 yr)] using ultrasonography and magnetic resonance imaging (MRI). Patella displacement relative to the tibia was monitored with ultrasonography during ramped isometric contractions of the knee extensors, and MRI was used to determine tendon cross-sectional area (CSA) and signal intensity. At peak force, patellar tendon deformation, stress, and strain were 13 (P = 0.05), 19, and 12% less in old compared with young (P < 0.05). Additionally, deformation, stiffness, stress, CSA, and length were 18, 35, 41, 28, and 11% greater (P < 0.05), respectively, in men compared with women. After normalization of mechanical properties to a common force, no age differences were apparent; however, stress and strain were 26 and 22% higher, respectively, in women compared with men (P < 0.05). CSA and signal intensity decreased 12 and 24%, respectively, with aging (P < 0.05) in the midregion of the tendon. These data suggest that differences in patellar tendon in vivo mechanical properties with aging are more related to force output rather than an age effect. In contrast, the decrease in signal intensity indirectly suggests that the internal milieu of the tendon is altered with aging; however, the physiological and functional consequence of this finding requires further study.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults

Todd A. Trappe; Chad C. Carroll; Jared M. Dickinson; Jennifer K. LeMoine; Jacob M. Haus; Bridget E. Sullivan; Jonah D. Lee; Bozena Jemiolo; Eileen M. Weinheimer; Chris Hollon

Evidence suggests that consumption of over-the-counter cyclooxygenase (COX) inhibitors may interfere with the positive effects that resistance exercise training has on reversing sarcopenia in older adults. This study examined the influence of acetaminophen or ibuprofen consumption on muscle mass and strength during 12 wk of knee extensor progressive resistance exercise training in older adults. Thirty-six individuals were randomly assigned to one of three groups and consumed the COX-inhibiting drugs in double-blind placebo-controlled fashion: placebo (67 ± 2 yr; n = 12), acetaminophen (64 ± 1 yr; n = 11; 4 g/day), and ibuprofen (64 ± 1 yr; n = 13; 1.2 g/day). Compliance with the resistance training program (100%) and drug consumption (via digital video observation, 94%), and resistance training intensity were similar (P > 0.05) for all three groups. Drug consumption unexpectedly increased muscle volume (acetaminophen: 109 ± 14 cm(3), 12.5%; ibuprofen: 84 ± 10 cm(3), 10.9%) and muscle strength (acetaminophen: 19 ± 2 kg; ibuprofen: 19 ± 2 kg) to a greater extent (P < 0.05) than placebo (muscle volume: 69 ± 12 cm(3), 8.6%; muscle strength: 15 ± 2 kg), when controlling for initial muscle size and strength. Follow-up analysis of muscle biopsies taken from the vastus lateralis before and after training showed muscle protein content, muscle water content, and myosin heavy chain distribution were not influenced (P > 0.05) by drug consumption. Similarly, muscle content of the two known enzymes potentially targeted by the drugs, COX-1 and -2, was not influenced (P > 0.05) by drug consumption, although resistance training did result in a drug-independent increase in COX-1 (32 ± 8%; P < 0.05). Drug consumption did not influence the size of the nonresistance-trained hamstring muscles (P > 0.05). Over-the-counter doses of acetaminophen or ibuprofen, when consumed in combination with resistance training, do not inhibit and appear to enhance muscle hypertrophy and strength gains in older adults. The present findings coupled with previous short-term exercise studies provide convincing evidence that the COX pathway(s) are involved in the regulation of muscle protein turnover and muscle mass in humans.


The Journal of Physiology | 2004

Interleukin-1 polymorphisms are associated with the inflammatory response in human muscle to acute resistance exercise.

Richard A. Dennis; Todd A. Trappe; Pippa Simpson; Chad C. Carroll; B. Emma Huang; Radhakrishnan Nagarajan; Edward D. Bearden; Cathy M. Gurley; Gordon W. Duff; William J. Evans; Kenneth S. Kornman; Charlotte A. Peterson

Inflammation appears to play an important role in the repair and regeneration of skeletal muscle after damage. We tested the hypothesis that the severity of the inflammatory response in muscle after an acute bout of resistance exercise is associated with single nucleotide polymorphisms (SNPs) previously shown to alter interleukin‐1 (IL‐1) activity. Using a double‐blind prospective design, sedentary young men were screened (n= 100) for enrolment (n= 24) based upon having 1 of 4 haplotype patterns composed of five polymorphic sites in the IL‐1 gene cluster: IL‐1A (+4845), IL‐1B (+3954), IL‐1B (−511), IL‐1B (−3737) and IL‐1RN (+2018). Subjects performed a standard bout of resistance leg exercise and vastus lateralis biopsies were obtained pre‐, and at 24, and 72 h post‐exercise. Inflammatory marker mRNAs (IL‐1β, IL‐6 and tumor necrosis factor‐α (TNF‐α)) and the number of CD68+ macrophages were quantified. Considerable variation was observed in the expression of these gene products between subjects. At 72 h post‐exercise, IL‐1β had increased in a number of subjects (n= 10) and decreased (n= 4) or did not change (n= 10) in others. Inflammatory responses were significantly associated with specific haplotype patterns and were also influenced by individual SNPs. Subjects with genotypes 1.1 at IL‐1B (+3954) or 2.2 at IL‐1B (−3737) had approximately a 2‐fold higher median induction of several markers, but no increase in macrophages, suggesting that cytokine gene expression is elevated per macrophage. The IL‐1RN (+2018) SNP maximized the response specifically within these groups and was associated with increased macrophage recruitment. This is the first report that IL‐1 genotype is associated with the inflammation of skeletal muscle following acute resistance exercise that may potentially affect the adaptations to chronic resistance exercise.


Journal of Applied Physiology | 2009

Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression

Bridget E. Sullivan; Chad C. Carroll; Bozena Jemiolo; Scott Trappe; S. Peter Magnusson; Simon Døssing; Michael Kjaer; Todd A. Trappe

Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendons main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP-2, MMP-9, MMP-3, and TIMP-1 at rest and after RE. Patellar tendon biopsy samples were taken from six individuals (3 men and 3 women) before and 4 h after a bout of RE and from a another six individuals (3 men and 3 women) before and 24 h after RE. Resting mRNA expression was used for sex comparisons (6 men and 6 women). Collagen type I, collagen type III, and MMP-2 were downregulated (P < 0.05) 4 h after RE but were unchanged (P > 0.05) 24 h after RE. All other genes remained unchanged (P > 0.05) after RE. Women had higher resting mRNA expression (P < 0.05) of collagen type III and a trend (P = 0.08) toward lower resting expression of MMP-3 than men. All other genes were not influenced (P > 0.05) by sex. Acute RE appears to stimulate a change in collagen type I, collagen type III, and MMP-2 gene regulation in the human patellar tendon. Sex influences the structural and regulatory mRNA expression of tendon.


American Journal of Physiology-endocrinology and Metabolism | 2010

Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans

Nicholas A. Burd; Jared M. Dickinson; Jennifer K. LeMoine; Chad C. Carroll; Bridget E. Sullivan; Jacob M. Haus; Bozena Jemiolo; Scott Trappe; Gordon M. Hughes; Charles E. Sanders; Todd A. Trappe

Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 +/- 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [(2)H(5)]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 +/- 0.004 to 0.108 +/- 0.014%/h) compared with placebo (0.074 +/- 0.004 to 0.091 +/- 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 +/- 0.9-fold) compared with placebo (1.3 +/- 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.


Journal of Applied Physiology | 2011

Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults

Chad C. Carroll; Jared M. Dickinson; Jennifer K. LeMoine; Jacob M. Haus; Eileen M. Weinheimer; Christopher J Hollon; Per Aagaard; S. P. Magnusson; Todd A. Trappe

Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance training. Thirty-six individuals were randomly assigned to a placebo (67 ± 2 yr old), acetaminophen (64 ± 1 yr old; 4,000 mg/day), or ibuprofen (64 ± 1 yr old; 1,200 mg/day) group in a double-blind manner and completed 12 wk of knee extensor resistance training. Before and after training in vivo patellar tendon properties were assessed with MRI [cross-sectional area (CSA) and signal intensity] and ultrasonography of patellar tendon deformation coupled with force measurements to obtain stiffness, modulus, stress, and strain. Mean patellar tendon CSA was unchanged (P > 0.05) with training in the placebo group, and this response was not influenced with ibuprofen consumption. Mean tendon CSA increased with training in the acetaminophen group (3%, P < 0.05), primarily due to increases in the mid (7%, P < 0.05) and distal (8%, P < 0.05) tendon regions. Correspondingly, tendon signal intensity increased with training in the acetaminophen group at the mid (13%, P < 0.05) and distal (15%, P = 0.07) regions. When normalized to pretraining force levels, patellar tendon deformation and strain decreased 11% (P < 0.05) and stiffness, modulus, and stress were unchanged (P > 0.05) with training in the placebo group. These responses were generally uninfluenced by ibuprofen consumption. In the acetaminophen group, tendon deformation and strain increased 20% (P < 0.05) and stiffness (-17%, P < 0.05) and modulus (-20%, P < 0.05) decreased with training. These data suggest that 3 mo of knee extensor resistance training in older adults induces modest changes in the mechanical properties of the patellar tendon. Over-the-counter doses of acetaminophen, but not ibuprofen, have a strong influence on tendon mechanical and material property adaptations to resistance training. These findings add to a growing body of evidence that acetaminophen has profound effects on peripheral tissues in humans.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Prostaglandin and myokine involvement in the cyclooxygenase-inhibiting drug enhancement of skeletal muscle adaptations to resistance exercise in older adults

Todd A. Trappe; Robert A. Standley; Bozena Jemiolo; Chad C. Carroll; Scott Trappe

Twelve weeks of resistance training (3 days/wk) combined with daily consumption of the cyclooxygenase-inhibiting drugs acetaminophen (4.0 g/day; n = 11, 64 ± 1 yr) or ibuprofen (1.2 g/day; n = 13, 64 ± 1 yr) unexpectedly promoted muscle mass and strength gains 25-50% above placebo (n = 12, 67 ± 2 yr). To investigate the mechanism of this adaptation, muscle biopsies obtained before and ∼72 h after the last training bout were analyzed for mRNA levels of prostaglandin (PG)/cyclooxygenase pathway enzymes and receptors [arachidonic acid synthesis: cytosolic phospholipase A(2) (cPLA(2)) and secreted phospholipase A(2) (sPLA(2)); PGF(2α) synthesis: PGF(2α) synthase and PGE(2) to PGF(2α) reductase; PGE(2) synthesis: PGE(2) synthase-1, -2, and -3; PGF(2α) receptor and PGE(2) receptor-4], cytokines and myokines involved in skeletal muscle adaptation (TNF-α, IL-1β, IL-6, IL-8, IL-10), and regulators of muscle growth [myogenin, myogenic regulatory factor-4 (MRF4), myostatin] and atrophy [Forkhead box O3A (FOXO3A), atrogin-1, muscle RING finger protein 1 (MuRF-1), inhibitory κB kinase β (IKKβ)]. Training increased (P < 0.05) cPLA(2), PGF(2α) synthase, PGE(2) to PGF(2α) reductase, PGE(2) receptor-4, TNF-α, IL-1β, IL-8, and IKKβ. However, the PGF(2α) receptor was upregulated (P < 0.05) only in the drug groups, and the placebo group upregulation (P < 0.05) of IL-6, IL-10, and MuRF-1 was eliminated in both drug groups. These results highlight prostaglandin and myokine involvement in the adaptive response to exercise in older individuals and suggest two mechanisms underlying the enhanced muscle mass gains in the drug groups: 1) The drug-induced PGF(2α) receptor upregulation helped offset the drug suppression of PGF(2α)-stimulated protein synthesis after each exercise bout and enhanced skeletal muscle sensitivity to this stimulation. 2) The drug-induced suppression of intramuscular PGE(2) production increased net muscle protein balance after each exercise bout through a reduction in PGE(2)-induced IL-6 and MuRF-1, both promoters of muscle loss.


Scandinavian Journal of Medicine & Science in Sports | 2006

The effect of strenuous aerobic exercise on skeletal muscle myofibrillar proteolysis in humans.

Jacob M. Haus; B.F. Miller; Chad C. Carroll; E.M. Weinheimer; Todd A. Trappe

Relatively little is known about the dynamics of the skeletal muscle protein pool following aerobic exercise. Myofibrillar protein synthesis has recently been shown to be substantially elevated for 3 days after a strenuous 60 min bout of one‐legged aerobic exercise, and this increase was surprisingly equal to or greater than what has been shown numerous times following resistance exercise over the same time course. Because net protein accretion is the sum of protein synthesis and degradation, we sought to directly measure skeletal muscle myofibrillar proteolysis in five healthy young males in response to an identical strenuous 60 min aerobic exercise bout and at the same time points (rest, 6, and 24 h post‐exercise and 48 and 72 h post‐exercise in a subset of subjects). We measured skeletal muscle myofibrillar proteolysis by monitoring the release of the natural tracer 3‐methylhistidine (3MH) from the vastus lateralis muscle into the interstitial space via microdialysis. Skeletal muscle interstitial 3MH concentration was no different (P>0.05) from rest (5.16±0.38 nmol/mL) after 6 (5.37±0.55 nmol/mL), 24 (5.40±0.26 nmol/mL), 48 (5.50±0.74 nmol/mL), or 72 h (4.73±0.28 nmol/mL). These results suggest that proteolysis of the myofibrillar fraction of skeletal muscle is relatively refractory to an intense aerobic exercise stimulus for up to 3 days, despite the large increase in synthesis of this muscle fraction following the same exercise stimulus. The apparent net myofibrillar protein accretion in the hours and days after exercise may occur in order to offset the large elevation in mixed muscle proteolysis that has been shown during similar bouts of intense one‐legged aerobic exercise.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Influence of acetaminophen consumption and exercise on Achilles tendon structural properties in male Wistar rats

Chad C. Carroll; Jamie A. Whitt; Amity Peterson; Brian S. Gump; Jamie Tedeschi; Tom L. Broderick

Chronic consumption of acetaminophen (APAP) during exercise training leads to a reduction in tendon stiffness and modulus compared with a placebo. We explored whether this effect could be due to a reduction in tendon collagen content or cross-linking. Ten-week-old male Wistar rats (n = 50) were divided into placebo or APAP groups and into sedentary or treadmill-exercised groups. APAP (200 mg/kg) or saline was administered once daily by oral gavage. Rats in the exercise groups ran on a treadmill 5 days per week for 8 wk with progression to 60 min per day, 20 m/min, and 8° incline. After 8 wk, lyophilized Achilles tendon samples were assayed for the collagen-specific amino acid hydroxyproline and cross-linking [hydroxylyslpyridinoline (HP)] content by high-performance liquid chromatrography. Collagen content was not influenced by exercise or APAP (P > 0.05). Compared with placebo, tendon water content was 7% (P = 0.006, main effect) lower in animals consuming APAP (placebo: 54.79 ± 0.8%, APAP: 50.89 ± 1.2%). HP in the Achilles tendon was 36% greater (sedentary: 141 ± 15, exercise: 204 ± 26 mmol/mol collagen) in the exercise-trained rats independent of drug treatment (P = 0.020, main effect). Independent of exercise, HP content was 33% lower (P = 0.032, main effect) in the animals consuming APAP (placebo: 195 ± 21, APAP: 140 ± 19 mmol/mol collagen). Our data suggests that chronic consumption of APAP results in a reduction in collagen cross-linking and a loss of tissue water independent of chronic exercise. This reduction in cross-linking and water content could contribute to the decrease in tendon stiffness noted in humans chronically consuming APAP.


Journal of Muscle Research and Cell Motility | 2004

Contractile protein concentrations in human single muscle fibers.

Chad C. Carroll; John A. Carrithers; Todd A. Trappe

The intent of this investigation was twofold:(1) to develop a convenient method for analyzing skeletal muscle protein concentrations in a large number of individual human single fibers and (2) to compare the myosin heavy chain (MHC) and actin concentrations in fibers expressing pure MHC I or MHC IIa. Individual vastus lateralis fibers were dissected from five individuals (3 M, 2 F; 24 ± 1 year) and used to determine single fiber total protein (TP) concentration and MHC distribution. Fibers expressing pure MHC I and MHC IIa were further analyzed for MHC (252 fibers; mean of 50/subject) and actin (160 fibers; mean of 32/subject) concentration relative to TP. Single fiber MHC concentration was 26 ± 4% greater (P < 0.05) in MHC IIa (364 ± 39 μg MHC/mg TP) vs. MHC I (266 ± 29 μg MHC/mg TP) fibers. No differences (P > 0.05) were noted in single fiber actin concentration (MHC I: 171 ± 17 μg actin/mg TP; MHC IIa: 165 ± 17 μg actin/mg TP). These data indicate that within the TP fraction, skeletal muscle fibers contain differing amounts of MHC, and this appears to be fiber type specific. These data and methods have implications for the study of human muscle fiber type specific alterations in various protein concentrations in response to exercise, models of unloading, and aging.

Collaboration


Dive into the Chad C. Carroll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge