Chad E. Galer
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chad E. Galer.
Human Gene Therapy | 1999
Helen Romanczuk; Chad E. Galer; Joseph Zabner; Gary Barsomian; Samuel C. Wadsworth; Catherine R. O'Riordan
Recombinant adenoviruses are currently being used as vectors for gene delivery to a wide variety of cells and tissues. Although generally efficacious for gene transfer in vitro, improvement in the efficiency of vector delivery in vivo may aid several gene therapy applications. One major obstacle is the lack of high-affinity viral receptors on the surface of certain cells that are targets for gene therapy. In principle, incorporation of avid, cell-specific ligands into the virion could markedly improve vector entry into the desired tissues. We have developed a strategy for addressing this issue in the lung by biopanning differentiated, ciliated airway epithelial cells against a phage display library. The peptide with the most effective binding was coupled to the surface of an adenovirus using bifunctional polyethylene glycol (PEG) molecules. The chemically modified adenoviral vector was able to effect gene transfer to well-differentiated human airway epithelial cells by an alternative pathway dependent on the incorporated peptide. Coupling of PEG to the surface of the virus also served to partially protect the virus from neutralizing antibodies in vitro. These experiments will aid in the design of improved adenoviral vectors with the capacity for more specific and efficient delivery of therapeutic genes to desired target tissues. We have used a novel method for enhancing gene delivery to target cells by coupling a biologically selected peptide to the surface of an adenovirus with bifunctional PEG molecules. Modification of the viral capsid by the addition of a peptide with binding preference for differentiated ciliated airway epithelia allowed gene delivery to those cells by a novel entry pathway. Incorporation of the CFTR gene in a similarly modified vector resulted in correction of defective Cl- transport in well-differentiated epithelial cultures established from human cystic fibrosis (CF) donors. The presence of PEG molecules on the surface of the virus served, in addition, to reduce antibody neutralization. Modification of adenoviruses with PEG/peptide complexes can serve to partially overcome the barrier of inefficient gene transfer in some cell types and some of the adverse immunological responses associated with gene delivery by these vectors.
Clinical Cancer Research | 2011
Maria K. Gule; Yunyun Chen; Daisuke Sano; Mitchell J. Frederick; Ge Zhou; Mei Zhao; Zvonimir L. Milas; Chad E. Galer; Ying C. Henderson; Samar A. Jasser; David L. Schwartz; James A. Bankson; Jeffrey N. Myers; Stephen Y. Lai
Purpose: Anaplastic thyroid carcinoma (ATC) is one of the most lethal human cancers with a median survival of 6 months. The inhibition of epidermal growth factor receptor (EGFR) alone, or with VEGF receptor 2 (VEGFR2), represents an attractive approach for treatment of ATC. Several reports have examined agents that target these receptors. However, with the misidentification of as many as 60% of all commonly used ATC cell lines, the significance of these past findings is unclear. Experimental Design: Cell lines authenticated by short tandem repeat profiling were selected to establish xenograft tumors in an orthotopic murine model of ATC. These mice were then treated with vandetanib to evaluate its effects on ATC tumor growth. Dynamic contrast-enhanced (DCE) MRI was utilized to measure the impact of vandetanib on tumor vasculature. Results: Vandetanib inhibited tumor growth of the ATC cell lines Hth83 and 8505C in vivo by 69.3% (P < 0.001) and 66.6% (P < 0.05), respectively, when compared with control. Significant decreases in vascular permeability (P < 0.01) and vascular volume fraction (P < 0.05) were detected by DCE-MRI in the orthotopic xenograft tumors after 1 week of treatment with vandetanib as compared with control. Conclusion: The inhibition of EGFR and VEGFR2 by vandetanib and its tremendous in vivo antitumor activity against ATC make it an attractive candidate for further preclinical and clinical development for the treatment of this particularly virulent cancer, which remains effectively untreatable. Vandetanib disrupts angiogenesis and DCE-MRI is an effective method to quantify changes in vascular function in vivo. Clin Cancer Res; 17(8); 2281–91. ©2011 AACR.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2011
Chad E. Galer; Christina L. Corey; Zhuoying Wang; Maher N. Younes; Fernando Gomez-Rivera; Samar A. Jasser; Dale L. Ludwig; Adel K. El-Naggar; Randal S. Weber; Jeffrey N. Myers
Cutaneous squamous cell carcinoma (CSCC) is the second most common nonmelanoma skin cancer. Most of the approximately 250,000 cases occurring annually in the United States are small, nonaggressive, and cured by excision alone. However, a subset of these tumors which are defined by poorly differentiated histology, large tumor size, invasion of adjacent structures, and/or regional metastases can prove resistant to treatment despite adjuvant radiotherapy and can have an increased risk of recurrence and nodal metastasis. Novel therapeutic approaches are necessary to improve the outcomes for patients with aggressive CSCC.
Journal of Virology | 2006
Anne Keriel; Céline René; Chad E. Galer; Joseph Zabner; Eric J. Kremer
ABSTRACT A major hurdle to the successful clinical use of some viral vectors relates to the innate, adaptive, and memory immune responses that limit the efficiency and duration of transgene expression. Some of these drawbacks may be circumvented by using vectors derived from nonhuman viruses such as canine adenovirus type 2 (CAV-2). Here, we evaluated the potential of CAV-2 vectors for gene transfer to the respiratory tract. We found that CAV-2 transduction was efficient in vivo in the mouse respiratory tract, and ex vivo in well-differentiated human pulmonary epithelia. Notably, the in vivo and ex vivo efficiency was poorly inhibited by sera from mice immunized with a human adenovirus type 5 (HAd5, a ubiquitous human pathogen) vector or by human sera containing HAd5 neutralizing antibodies. Following intranasal instillation in mice, CAV-2 vectors also led to a lower level of inflammatory cytokine secretion and cellular infiltration compared to HAd5 vectors. Moreover, CAV-2 transduction efficiency was increased in vitro in human pulmonary cells and in vivo in the mouse respiratory tract by FK228, a histone deacetylase inhibitor. Finally, by using a helper-dependent CAV-2 vector, we increased the in vivo duration of transgene expression to at least 3 months in immunocompetent mice without immunosuppression. Our data suggest that CAV-2 vectors may be efficient and safe tools for long-term clinical gene transfer to the respiratory tract.
Archives of Otolaryngology-head & Neck Surgery | 2009
Daisuke Sano; Sungweon Choi; Zvonimir L. Milas; Ge Zhou; Chad E. Galer; Ying Wen Su; Maria K. Gule; Mei Zhao; Zhenping Zhu; Jeffrey N. Myers
OBJECTIVE To evaluate the therapeutic effect of treatment with a combination of the monoclonal antibodies to the vascular endothelial growth factor receptor (DC101) and the epidermal growth factor receptor (cetuximab) in an orthotopic nude mouse model of metastatic squamous cell carcinoma of the oral tongue (SCCOT). DESIGN In vivo study. SETTING A translational research laboratory at a comprehensive cancer center. SUBJECTS Male athymic nude mice aged 8 to 12 weeks. INTERVENTION To develop orthotopic nude mouse models of SCCOT, OSC-19 cells or luciferase (Luc)-expressing OSC-19-Luc and JMAR-Luc cells were injected into the tongues of nude mice. Animals were randomly divided into 4 groups: DC101 alone, cetuximab alone, DC101 plus cetuximab, or placebo, and all treatments were administered twice per week for 4 weeks. The in vivo antitumor activity was monitored noninvasively by bioluminescence imaging. Tumors were resected at necropsy, and immunohistochemical and immunofluorescent staining were performed. MAIN OUTCOME MEASURES Tumor size, bioluminescence, animal survival, and percentage of animals with lymph node metastasis. RESULTS At the conclusion of the treatment period, the mean tumor volumes in the cetuximab alone and the DC101 plus cetuximab groups had decreased significantly compared with those that received the placebo control (68% [P = .002] and 84% [P < .001], respectively). Significant effects of the treatment were also observed in bioluminescence imaging. Mice treated with DC101 plus cetuximab also lived longer and had a lower incidence of neck lymph node metastases compared with the control group (P = .003). CONCLUSIONS Treatment with DC101 plus cetuximab inhibited the growth of SCCOT and decreased the incidence of the neck lymph node metastases in vivo. These results suggest that this combination treatment may be an effective strategy against metastatic SCCOT and warrants further preclinical trials.
Oral Oncology | 2011
Chad E. Galer; Daisuke Sano; Sukhen C. Ghosh; Jeong H. Hah; Edmund Auzenne; Amirali N. Hamir; Jeffrey N. Myers; Jim Klostergaard
Chemotherapeutic regimens incorporating taxanes significantly improve outcomes for patients with squamous cell carcinomas of the head and neck (SCCHN). However, treatment with taxanes is limited by toxicities, including bone marrow suppression and peripheral neuropathies. We proposed that conjugating taxanes to targeting carrier molecules would increase antitumor efficacy and decrease toxicity. The cell surface proteoglycan, CD44, is expressed on most SCCHNs, and we hypothesized that it is an attractive candidate for targeted therapy via its natural ligand, hyaluronic acid (HA). We determined whether HA-paclitaxel conjugates were able to decrease tumor growth and improve survival in orthotopic nude mouse human SCCHN xenograft models. HA-paclitaxel concentration-dependent growth inhibition of human SCCHN cell lines OSC-19 and HN5 in vitro, very similarly to free paclitaxel treatment. Tumor cell uptake of FITC-labeled HA-paclitaxel was significantly blocked with free HA, indicating the dependence of uptake on CD44. HA-paclitaxel administered intravenously once per week for three weeks at 120 mg/kg paclitaxel equivalents, far above the paclitaxel maximum tolerated dose, exerted superior tumor growth control to that of paclitaxel in both orthotopic OSC-19-luciferase and HN5 xenograft models in vivo. Mouse survival following HA-paclitaxel administration was prolonged compared with that of controls in mice implanted with either of these xenografts. Mice treated with HA-paclitaxel displayed increased TUNEL(+) cells in tumor tissue, as well as markedly reduced microvessel density compared to those treated with free paclitaxel. No acute histopathological changes were observed in mice treated with HA-paclitaxel. Thus, we conclude that HA-paclitaxel effectively inhibits tumor growth in human SCCHN xenografts via an HA-mediated mechanism and this conjugate should be considered for further preclinical development for this disease.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2010
Daisuke Sano; David Fooshee; Mei Zhao; Genevieve A. Andrews; Mitchell J. Frederick; Chad E. Galer; Zvonimir L. Milas; Phuong Khanh H. Morrow; Jeffrey N. Myers
We investigated the effects of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 (VEGFR‐2) and epidermal growth factor receptor (EGFR), alone and in combination with paclitaxel in an orthotopic mouse model of human head and neck squamous cell carcinoma (HNSCC).
Experimental Biology and Medicine | 2009
Geetika Chakravarty; Alfredo A. Santillan; Chad E. Galer; Henry P. Adams; Abdal K. El-Naggar; Samar A. Jasser; Sayed Mohsin; Debasis Mondal; Gary L. Clayman; Jeffrey N. Myers
Overexpression of insulin-like growth factor-I receptor (IGF-IR) is seen in a multitude of human thyroid cancers and correlates with poor prognosis. However, recent studies suggest that low phospho-IGF-IR (pIGF-IR) expression rather than its overexpression may be an indicator of poorly differentiated disease. No previous study has evaluated the expression of pIGF-IR to determine if activation or loss of expression of this receptor is associated with thyroid tumor progression. Accordingly, a quantitative immunohistochemical (IHC) method was used to evaluate the clinico-pathological significance of pIGF-IR expression in archival samples of human thyroid carcinomas. Quantitative analysis of pIGF-IR levels revealed a significant difference in the median index of pIGF-IR between different histological subtypes of thyroid cancer (P < 0.001). Specifically, the median pIGF-IR index of differentiated thyroid cancers was significantly higher than the median index of other poorly differentiated thyroid cancer (P < 0.001). This was further confirmed in individual tumor sections of thyroid carcinoma where anaplastic and differentiated components co-existed. No significant difference was noted in the pIGF-IR index of tumors grouped by size or stage but a trend towards lower mean pIGF-IR index was noted in older patients. Our data indicates that pIGF-IR is upregulated in a majority of follicular thyroid carcinomas, suggesting it may be a potential target for therapy for patients with this disease. In addition, since low pIGF-IR expression was found to correlate with aggressive human thyroid carcinoma, it also suggests that IGF-IR may not be needed for progression of anaplastic thyroid carcinoma possibly because other cell signaling pathways are activated, obviating the need for IGF-IR signaling. However, more mechanistic studies would be necessary to substantiate the possibility that pIGF-IR may be important for differentiation of thyroid tissues and is lost with disease progression.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2012
Chad E. Galer; Alfredo A. Santillan; Daniel Chelius; Winston W. Huh; Adel K. El-Naggar; Ehab Y. Hanna; Randal S. Weber; Michael E. Kupferman
Minor salivary gland malignancies in children are rare and data on treatment and outcomes are limited.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2014
J. Hun Hah; Mei Zhao; Curtis R. Pickering; Mitchell J. Frederick; Genevieve A. Andrews; Samar A. Jasser; David Fooshee; Zvonimir L. Milas; Chad E. Galer; Daisuke Sano; William N. William; Edward S. Kim; John V. Heymach; Lauren Averett Byers; Vassiliki Papadimitrakopoulou; Jeffrey N. Myers
The purpose of this study was to identify mechanisms of innate resistance to an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, erlotinib, in a panel of head and neck squamous cell carcinoma (HNSCC) cell lines. Specifically, we analyzed the role of HRAS mutations in erlotinib resistance.