Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad J. Roy is active.

Publication


Featured researches published by Chad J. Roy.


The Journal of Infectious Diseases | 2005

Protective Immunization against Inhalational Anthrax: A Comparison of Minimally Invasive Delivery Platforms

John A. Mikszta; Vincent J. Sullivan; Cheryl H. Dean; Andrea Waterston; Jason B. Alarcon; John P. Dekker; John M. Brittingham; Juan Huang; Matthew S. Ferriter; Ge Jiang; Kevin D. Mar; Kamal U. Saikh; Bradley G. Stiles; Chad J. Roy; Robert G. Ulrich; Noel G. Harvey

A new anthrax vaccine under clinical investigation is based on recombinant Bacillus anthracis protective antigen (rPA). Here, we investigated microneedle-based cutaneous and nasal mucosal delivery of rPA in mice and rabbits. In mice, intradermal (id) delivery achieved up to 90% seroconversion after a single dose, compared with 20% after intramuscular (im) injection. Intranasal (inl) delivery of a liquid formulation required 3 doses to achieve responses that were comparable with those achieved via the id or im routes. In rabbits, id delivery provided complete protection against aerosol challenge with anthrax spores; in addition, novel powder formulations administered inl provided complete protection, whereas a liquid formulation provided only partial protection. These results demonstrate, for the first time, that cutaneous or nasal mucosal administration of rPA provides complete protection against inhalational anthrax in rabbits. The novel vaccine/device combinations described here have the potential to improve the efficacy of rPA and other biodefense vaccines.


The Journal of Infectious Diseases | 2010

Genetic Requirements for the Survival of Tubercle Bacilli in Primates

Noton K. Dutta; Smriti Mehra; Peter J. Didier; Chad J. Roy; Lara A. Doyle; Xavier Alvarez; Marion S. Ratterree; Nicholas A. Be; Gyanu Lamichhane; Sanjay K. Jain; Michelle Lacey; Andrew A. Lackner; Deepak Kaushal

BACKGROUND Tuberculosis (TB) leads to the death of 1.7 million people annually. The failure of the bacille Calmette-Guérin vaccine, synergy between AIDS and TB, and the emergence of drug resistance have worsened this situation. It is imperative to delineate the mechanisms employed by Mycobacterium tuberculosis to successfully infect and persist in mammalian lungs. METHODS Nonhuman primates (NHPs) are arguably the best animal system to model critical aspects of human TB. We studied genes essential for growth and survival of M. tuberculosis in the lungs of NHPs experimentally exposed to aerosols of an M. tuberculosis transposon mutant library. RESULTS Mutants in 108 M. tuberculosis genes (33.13% of all genes tested) were attenuated for in vivo growth. Comparable studies have reported the attenuation of only approximately 6% of mutants in mice. The M. tuberculosis mutants attenuated for in vivo survival in primates were involved in the transport of various biomolecules, including lipid virulence factors; biosynthesis of cell-wall arabinan and peptidoglycan; DNA repair; sterol metabolism; and mammalian cell entry. CONCLUSIONS Our study highlights the various virulence mechanisms employed by M. tuberculosis to overcome the hostile environment encountered during infection of primates. Prophylactic approaches aimed against bacterial factors that respond to such in vivo stressors have the potential to prevent infection at an early stage, thus likely reducing the extent of transmission of M. tuberculosis.


Infection and Immunity | 2006

Microneedle-Based Intradermal Delivery of the Anthrax Recombinant Protective Antigen Vaccine

John A. Mikszta; John P. Dekker; Noel G. Harvey; Cheryl H. Dean; John M. Brittingham; Joanne Huang; Vincent J. Sullivan; Beverly Dyas; Chad J. Roy; Robert G. Ulrich

ABSTRACT The recombinant protective antigen (rPA) of Bacillus anthracis is a promising anthrax vaccine. We compared serum immunoglobulin G levels and toxin-neutralizing antibody titers in rabbits following delivery of various doses of vaccine by microneedle-based intradermal (i.d.) delivery or intramuscular (i.m.) injection using conventional needles. Intradermal delivery required less antigen to induce levels of antibody similar to those produced via i.m. injection during the first 2 weeks following primary and booster inoculation. This dose-sparing effect was less evident at the later stages of the immune response. Rabbits immunized i.d. with 10 μg of rPA displayed 100% protection from aerosol spore challenge, while i.m. injection of the same dose provided slightly lower protection (71%). Groups immunized with lower antigen doses were partially protected (13 to 29%) regardless of the mode of administration. Overall, our results suggest rPA formulated with aluminum adjuvant and administered to the skin by a microneedle-based device is as efficacious as i.m. vaccination.


Inhalation Toxicology | 2003

IMPACT OF INHALATION EXPOSURE MODALITY AND PARTICLE SIZE ON THE RESPIRATORY DEPOSITION OF RICIN IN BALB/c MICE

Chad J. Roy; Martha L. Hale; Justin M. Hartings; Louise Pitt; Steven Duniho

Ricin is a toxic lectin derived from the seed of Ricinus communis (castor plant). It is lethal in small quantities when disseminated as an aerosol. We determined the impact of using two types of exposure chambers and different particle sizes on the deposition of ricin aerosols in mice. Initially, two types of inhalation exposure chambers (whole-body [WB] or nose-only [NO]) were compared using the same size aerosol (1 µm) to determine the potential impact upon respiratory deposition and presented dose. We then assessed the role of particle size on deposition by using aerosols with two distinctly sized particle distributions. Selected organs were collected at four time points after exposure and were analyzed by quantitative enyzme-linked immunosorbent assay (ELISA) and epifluorescence microscopy. Results of the exposure chamber comparison, using 1-µm particles only, indicated approximately 50% of the total ricin in the 4 organs was detected in the lung tissue 1 h after exposure. The trachea and nasopharyngeal region of the animals exposed using the WB chamber contained significantly more ricin than those of animals exposed in the NO chamber. Histopathology indicated an accumulation of ricin in both the tracheobronchial and pulmonary regions with pronounced bronchiolar degradation 48 h postexposure. When particles larger than 3 µm were used, results indicated a considerable amount of ricin initially detected in the trachea, although this finding was discounted due to the heterodispersity of the particles generated. Interestingly, no animals died as a result of exposure to the equivalent of 4 LD50s (as determined using a 1-µm particle) when exposed to the larger size distribution of particles. This result indicates a differential lethality that is contingent upon aerosol size.


Journal of Medical Primatology | 2011

Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus

Smriti Mehra; Nadia A. Golden; Noton K. Dutta; Cecily C. Midkiff; Xavier Alvarez; Lara A. Doyle; Majdouline Asher; Kasi Russell-Lodrigue; Chris Monjure; Chad J. Roy; James Blanchard; Peter J. Didier; Ronald S. Veazey; Andrew A. Lackner; Deepak Kaushal

Background  Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ∼11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation.


Vaccine | 2011

A naturally-derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection

Wildaliz Nieves; Saja Asakrah; Omar Qazi; Katherine A. Brown; Jonathan R. Kurtz; David P. AuCoin; James B. McLachlan; Chad J. Roy; Lisa A. Morici

Burkholderia pseudomallei, and other members of the Burkholderia, are among the most antibiotic-resistant bacterial species encountered in human infection. Mortality rates associated with severe B. pseudomallei infection approach 50% despite therapeutic treatment. A protective vaccine against B. pseudomallei would dramatically reduce morbidity and mortality in endemic areas and provide a safeguard for the U.S. and other countries against biological attack with this organism. In this study, we investigated the immunogenicity and protective efficacy of B. pseudomallei-derived outer membrane vesicles (OMVs). Vesicles are produced by Gram-negative and Gram-positive bacteria and contain many of the bacterial products recognized by the host immune system during infection. We demonstrate that subcutaneous (SC) immunization with OMVs provides significant protection against an otherwise lethal B. pseudomallei aerosol challenge in BALB/c mice. Mice immunized with B. pseudomallei OMVs displayed OMV-specific serum antibody and T-cell memory responses. Furthermore, OMV-mediated immunity appears species-specific as cross-reactive antibody and T cells were not generated in mice immunized with Escherichia coli-derived OMVs. These results provide the first compelling evidence that OMVs represent a non-living vaccine formulation that is able to produce protective humoral and cellular immunity against an aerosolized intracellular bacterium. This vaccine platform constitutes a safe and inexpensive immunization strategy against B. pseudomallei that can be exploited for other intracellular respiratory pathogens, including other Burkholderia and bacteria capable of establishing persistent infection.


Nature Communications | 2015

Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis

Deepak Kaushal; Taylor W. Foreman; Uma S. Gautam; Xavier Alvarez; Toidi Adekambi; Javier Rangel-Moreno; Nadia A. Golden; Ann-Marie Johnson; Bonnie L. Phillips; Muhammad H. Ahsan; Kasi Russell-Lodrigue; Lara A. Doyle; Chad J. Roy; Peter J. Didier; James Blanchard; Jyothi Rengarajan; Andrew A. Lackner; Shabaana A. Khader; Smriti Mehra

Tuberculosis (TB) is a global pandaemic, partially due to the failure of vaccination approaches. Novel anti-TB vaccines are therefore urgently required. Here we show that aerosol immunization of macaques with the Mtb mutant in SigH (MtbΔsigH) results in significant recruitment of inducible bronchus-associated lymphoid tissue (iBALT) as well as CD4+ and CD8+ T cells expressing activation and proliferation markers to the lungs. Further, the findings indicate that pulmonary vaccination with MtbΔsigH elicited strong central memory CD4+ and CD8+ T-cell responses in the lung. Vaccination with MtbΔsigH results in significant protection against a lethal TB challenge, as evidenced by an approximately three log reduction in bacterial burdens, significantly diminished clinical manifestations and granulomatous pathology and characterized by the presence of profound iBALT. This highly protective response is virtually absent in unvaccinated and BCG-vaccinated animals after challenge. These results suggest that future TB vaccine candidates can be developed on the basis of MtbΔsigH.


The Journal of Infectious Diseases | 2012

The Mycobacterium tuberculosis Stress Response Factor SigH Is Required for Bacterial Burden as Well as Immunopathology in Primate Lungs

Smriti Mehra; Nadia A. Golden; Kerstan Stuckey; Peter J. Didier; Lara A. Doyle; Kasi Russell-Lodrigue; Chie Sugimoto; Atsuhiko Hasegawa; Satheesh K. Sivasubramani; Chad J. Roy; Xavier Alvarez; Marcelo J. Kuroda; James Blanchard; Andrew A. Lackner; Deepak Kaushal

BACKGROUND Sigma H (sigH) is a major Mycobacterium tuberculosis (Mtb) stress response factor. It is induced in response to heat, oxidative stress, cell wall damage, and hypoxia. Infection of macrophages with the Δ-sigH mutant generates more potent innate immune response than does infection with Mtb. The mutant is attenuated for pathology in mice. METHODS We used a nonhuman primate (NHP) model of acute tuberculosis, to better understand the phenotype of the Δ-sigH mutant in vivo. NHPs were infected with high doses of Mtb or the mutant, and the progression of tuberculosis was analyzed in both groups using clinical, pathological, microbiological, and immunological parameters. RESULTS Animals exposed to Mtb rapidly progressed to acute pulmonary tuberculosis as indicated by worsening clinical correlates, high lung bacterial burden, and granulomatous immunopathology. All the animals rapidly succumbed to tuberculosis. On the other hand, the NHPs exposed to the Mtb:Δ-sigH mutant did not exhibit acute tuberculosis, instead showing significantly blunted disease. These NHPs survived the entire duration of the study. CONCLUSIONS The Mtb:Δ-sigH mutant is completely attenuated for bacterial burden as well as immunopathology in NHPs. SigH and its regulon are required for complete virulence in primates. Further studies are needed to identify the molecular mechanism of this attenuation.


PLOS ONE | 2010

Immunospecific Responses to Bacterial Elongation Factor Tu during Burkholderia Infection and Immunization

Wildaliz Nieves; Julie Heang; Saja Asakrah; Kerstin Höner zu Bentrup; Chad J. Roy; Lisa A. Morici

Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.


American Journal of Respiratory and Critical Care Medicine | 2015

The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence

Smriti Mehra; Taylor W. Foreman; Peter J. Didier; Muhammad H. Ahsan; Teresa A. Hudock; Ryan S. Kissee; Nadia A. Golden; Uma Shankar Gautam; Ann-Marie Johnson; Xavier Alvarez; Kasi Russell-Lodrigue; Lara A. Doyle; Chad J. Roy; Tianhua Niu; James Blanchard; Shabaana A. Khader; Andrew A. Lackner; David R. Sherman; Deepak Kaushal

RATIONALE Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia. OBJECTIVES To understand DosRs contribution in the persistence of M. tuberculosis, we compared the phenotype of various DosR regulon mutants and a complemented strain to M. tuberculosis in macaques, which faithfully model M. tuberculosis infection. METHODS We measured clinical and microbiologic correlates of infection with M. tuberculosis relative to mutant/complemented strains in the DosR regulon, studied lung pathology and hypoxia, and compared immune responses in lung using transcriptomics and flow cytometry. MEASUREMENTS AND MAIN RESULTS Despite being able to replicate initially, mutants in DosR regulon failed to persist or cause disease. On the contrary, M. tuberculosis and a complemented strain were able to establish infection and tuberculosis. The attenuation of pathogenesis in animals infected with the mutants coincided with the appearance of a Th1 response and organization of hypoxic lesions wherein M. tuberculosis expressed dosR. The lungs of animals infected with the mutants (but not the complemented strain) exhibited early transcriptional signatures of T-cell recruitment, activation, and proliferation associated with an increase of T cells expressing homing and proliferation markers. CONCLUSIONS Delayed adaptive responses, a hallmark of M. tuberculosis infection, not only lead to persistence but also interfere with the development of effective antituberculosis vaccines. The DosR regulon therefore modulates both the magnitude and the timing of adaptive immune responses in response to hypoxia in vivo, resulting in persistent infection. Hence, DosR regulates key aspects of the M. tuberculosis life cycle and limits lung pathology.

Collaboration


Dive into the Chad J. Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Smriti Mehra

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge