Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chad Michael Rigsby is active.

Publication


Featured researches published by Chad Michael Rigsby.


Journal of Chemical Ecology | 2012

Microbes as Targets and Mediators of Allelopathy in Plants

Don Cipollini; Chad Michael Rigsby; E. Kathryn Barto

Studies of allelopathy in terrestrial systems have experienced tremendous growth as interest has risen in describing biochemical mechanisms responsible for structuring plant communities, determining agricultural and forest productivity, and explaining invasive behaviors in introduced organisms. While early criticisms of allelopathy involved issues with allelochemical production, stability, and degradation in soils, an understanding of the chemical ecology of soils and its microbial inhabitants has been increasingly incorporated in studies of allelopathy, and recognized as an essential predictor of the outcome of allelopathic interactions between plants. Microbes can mediate interactions in a number of ways with both positive and negative outcomes for surrounding plants and plant communities. In this review, we examine cases where soil microbes are the target of allelopathic plants leading to indirect effects on competing plants, provide examples where microbes play either a protective effect on plants against allelopathic competitors or enhance allelopathic effects, and we provide examples where soil microbial communities have changed through time in response to allelopathic plants with known or potential effects on plant communities. We focus primarily on interactions involving wild plants in natural systems, using case studies of some of the world’s most notorious invasive plants, but we also provide selected examples from agriculturally managed systems. Allelopathic interactions between plants cannot be fully understood without considering microbial participants, and we conclude with suggestions for future research.


Journal of Insect Physiology | 2015

Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations

Chad Michael Rigsby; David N. Showalter; Daniel A. Herms; Jennifer L. Koch; Pierluigi Bonello; Don Cipollini

Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance mechanisms.


Oecologia | 2014

Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside

Justin G. A. Whitehill; Chad Michael Rigsby; Don Cipollini; Daniel A. Herms; Pierluigi Bonello

The emerald ash borer (EAB; Agrilus planipennis Fairmaire) is causing widespread mortality of ash (Fraxinus spp.) in North America. To date, no mechanisms of host resistance have been identified against this pest. Methyl jasmonate was applied to susceptible North American and resistant Asian ash species to determine if it can elicit induced responses in bark that enhance resistance to EAB. In particular, phenolic compounds, lignin, and defense-related proteins were quantified, and compounds associated with resistance were subsequently tested directly against EAB larvae in bioassays with artificial diet. MeJA application decreased adult emergence in susceptible ash species, comparable to levels achieved by insecticide application. Concentration of the phenolic compound verbascoside sharply increased after MeJA application to green and white ash. When incorporated in an artificial diet, verbascoside decreased survival and growth of EAB neonates in a dose-dependent fashion. Lignin and trypsin inhibitors were also induced by MeJA, and analogs of both compounds reduced growth of EAB larvae in artificial diets. We conclude that the application of MeJA prior to EAB attack has the ability to enhance resistance of susceptible ash trees by inducing endogenous plant defenses, and report evidence that induction of verbascoside is a mechanism of resistance to EAB.


Environmental Entomology | 2015

Incidence of Infestation and Larval Success of Emerald Ash Borer (Agrilus planipennis) on White Fringetree (Chionanthus virginicus), Chinese Fringetree (Chionanthus retusus), and Devilwood (Osmanthus americanus).

Don Cipollini; Chad Michael Rigsby

ABSTRACT We compared the incidence of infestation by emerald ash borer (EAB) and lilac borer on white fringetree to that of its Asian congener, Chinese fringetree, Chionanthus retusus, and a North American relative, devilwood, Osmanthus americanus. We also conducted laboratory bioassays to determine the suitability of these hosts for EAB larvae. At Spring Grove Cemetery and Arboretum in Cincinnati, Ohio, 9 of 28 white fringetrees examined were infested by EAB. Most of the white fringetrees had lilac borer infestation, and most of the trees infested by EAB also had lilac borer infestation. None of the 11 Chinese fringetrees examined were infested by either EAB or lilac borer. Each of the five devilwood individuals examined was infested by lilac borer, but not EAB. At The Morton Arboretum in Lisle, Illinois, 7 of 16 white fringetrees examined were infested by EAB, while none of the seven Chinese fringetrees examined were infested by either insect. A 40-d bioassay confirmed that white fringetree was an acceptable host, producing fourth-instar larvae that were smaller than those produced on a highly susceptible cultivar of green ash, Fraxinus pennsylvanica. No larvae survived on Chinese fringetree, and neonates were largely incapable of feeding on it. Two larvae survived on devilwood, reaching the second instar and excavating extensive galleries. Future work should be aimed at biotic and abiotic factors influencing the susceptibility of white fringetree, as well as further examination of close relatives for their vulnerability to EAB.


Annals of The Entomological Society of America | 2014

Oviposition Preferences of Agrilus planipennis (Coleoptera: Buprestidae) for Different Ash Species Support the Mother Knows Best Hypothesis

Chad Michael Rigsby; Vanessa L. Muilenburg; Thaddeus Tarpey; Daniel A. Herms; Don Cipollini

ABSTRACT The “mother knows best” hypothesis states that adults should choose hosts for oviposition on which their offspring will best perform, maximizing their own fitness. It has been hypothesized that this preference—performance relationship for wood-boring insects is especially important because larvae are not able to switch hosts, although no study has examined oviposition choices for these insects. We examined oviposition preferences of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in two common gardens, one on the campus of Wright State University in Dayton, OH, and the other at the Michigan State University Tollgate Research Farm in Novi, MI, by wrapping cheesecloth around ash trunks to assess passive oviposition patterns.Wefound that in both gardens, ash species native to North America, which are highly susceptible to the emerald ash borer, consistently received more ova than Manchurian ash, which is indigenous to Asia and more resistant to the emerald ash borer. Susceptible trees in the Novi garden received 93 times the number of ova and susceptible trees at the Wright State garden received up to 25 times the number of ova that were received by Manchurian ash in each of their respective gardens. Neither tree size nor vigor affected oviposition choice. There were also higher numbers of adult exit holes on North American than Manchurian ash in both common gardens. The observed oviposition preferences in this study align with patterns of adult feeding preference, ash host mortality, and exit hole numbers from other studies. These observations also suggest that oviposition preferences may contribute to interspecific patterns of host resistance and mortality. Collectively, our results demonstrate that the emerald ash borer prefers to oviposit on species on which its offspring will best perform, suggesting that there is strong selection for the ability to recognize host cues that predict better larval survival and performance.


Journal of Chemical Ecology | 2016

Higher Activities of Defense-Associated Enzymes may Contribute to Greater Resistance of Manchurian Ash to Emerald Ash Borer Than A closely Related and Susceptible Congener.

Chad Michael Rigsby; Daniel A. Herms; Pierluigi Bonello; Don Cipollini

Emerald ash borer (EAB) is an invasive beetle native to Asia that infests and kills ash (Fraxinus spp.) in North America. Previous experiments indicated that larvae feeding on co-evolved, resistant Manchurian ash (F. mandshurica) have increased antioxidant and quinone-protective enzyme activities compared to larvae feeding on susceptible North American species. Here, we examined mechanisms of host-generated oxidative and quinone-based stress and other putative defenses in Manchurian ash and the closely related and chemically similar, but susceptible, black ash (F. nigra), with and without exogenous application of methyl jasmonate (MeJA) to induce resistance mechanisms. Peroxidase activities were 4.6–13.3 times higher in Manchurian than black ash, although both species appeared to express the same three peroxidase isozymes. Additionally, peroxidase-mediated protein cross-linking activity was stronger in Manchurian ash. Polyphenol oxidase, β-glucosidase, chitinase, and lipoxygenase activities also were greater in Manchurian ash, but only lipoxygenase activity increased with MeJA application. Phloem H2O2 levels were similar and were increased by MeJA application in both species. Lastly, trypsin inhibitor activity was detected in methanol and water extracts that were not allowed to oxidize, indicating the presence of phenolic-based trypsin inhibitors. However, no proteinaceous trypsin inhibitor activity was detected in either species. In response to MeJA application, Manchurian ash had higher trypsin inhibitor activity than black ash using the unoxidized water extracts, but no treatment effects were detected using methanol extracts. Based on these results we hypothesize that peroxidases, lignin polymerization, and quinone generation contribute to the greater resistance to EAB displayed by Manchurian ash.


Environmental Entomology | 2013

Water Conservation Features of Ova of Agrilus planipennis (Coleoptera: Buprestidae)

Chad Michael Rigsby; Don Cipollini; Evan M. Amstutz; Terrance J. Smith; Jay A. Yoder

ABSTRACT The emerald ash borer, Agrilus planipennis Fairmaire, has destroyed millions of ash trees (Fraxinus spp.) in North America since first identified in Detroit in 2002. With species of ash distributed throughout North America, it is easy to speculate the extinction of all susceptible species of ash on the continent given a lack of physical, environmental, or climactic barrier for dispersal of the insect. We investigated water balance characteristics of emerald ash borer ova by using gravimetric methods in an effort to measure their response to heat- and water-stress and explore possible influences this stress may have on the ecology and physiology of the ovum. We also explored the possible water balance benefit of a peculiar, “clustering,” oviposition behavior, as well as the difference in responses to stress between ova from a laboratory colony and ova from two wild populations. We found no evidence of water vapor absorption as a water balance strategy; rather enhanced water retention, resistance to desiccation, and viability with low water content were important survival strategies for these ova. Surface lipids resist thermal breakdown as indicated by ova having no detectable critical transition temperature, maintaining their water-proofing function as temperature rises. The observed “clustering” behavior had no desiccation-avoidance benefit and ova from the wild populations behaved almost identically to the ova from the lab colony, although the lab ova were slightly larger and more sensitive to dehydration. Given this new information, there appears to be no heat- or water-stress barriers for the dispersal of this devastating pest at the ovum stage.


Journal of Chemical Ecology | 2017

Variation in the Volatile Profiles of Black and Manchurian Ash in Relation to Emerald Ash Borer Oviposition Preferences

Chad Michael Rigsby; Nathaniel B. McCartney; Daniel A. Herms; James H. Tumlinson; Don Cipollini

Emerald ash borer (EAB; Agrilus planipennis) is a devastating pest of ash (Fraxinus spp.) in its invaded range in North America. Its coevolved Asian hosts are more resistant and less preferred for oviposition than susceptible North American species. We compared EAB oviposition preferences and bark and canopy volatile organic compound (VOC) emissions of resistant Manchurian ash and susceptible black ash, and examined relationships between VOC profiles and oviposition. In the field, black ash was highly preferred for oviposition while no eggs were laid on Manchurian ash, and we found clear differences in the VOC profiles of Manchurian and black ash. We detected 78 compounds emitted from these species, including 16 compounds that elicited EAB antennal activity in prior studies. Four compounds were unique to black and 11 to Manchurian ash. Emission rates of 14 canopy and 19 bark volatiles varied among the two species, including four previously reported as antennally active. Specifically, 7-epi-sesquithujene (bark) emissions were greater from black ash, while β-caryophyllene (canopy), linalool (bark), and α-cubebene (bark) were emitted at higher rates by Manchurian ash. No relationships were found between the emission rate of any single compound or group of compounds (e.g. monoterpenes) suggesting that preference may be based on complex profile combinations. This is the first study to directly compare VOCs of black and Manchurian ash as well as the first to examine bark- and canopy-specific VOCs. The unique bark and canopy VOC profiles of these two species implicates potentially important variation in VOCs between a closely related resistant and susceptible species that provides a foundation for future studies of host preferences of EAB.


Environmental Entomology | 2017

Pretty Picky for a Generalist: Impacts of Toxicity and Nutritional Quality on Mantid Prey Processing

Jamie L. Rafter; Justin F. Vendettuoli; Liahna Gonda-King; Daniel Niesen; Navindra P. Seeram; Chad Michael Rigsby; Evan L. Preisser

Abstract Prey have evolved a number of defenses against predation, and predators have developed means of countering these protective measures. Although caterpillars of the monarch butterfly, Danaus plexippus L., are defended by cardenolides sequestered from their host plants, the Chinese mantid Tenodera sinensis Saussure guts the caterpillar before consuming the rest of the body. We hypothesized that this gutting behavior might be driven by the heterogeneous quality of prey tissue with respect to toxicity and/or nutrients. We conducted behavioral trials in which mantids were offered cardenolide-containing and cardenolide-free D. plexippus caterpillars and butterflies. In addition, we fed mantids starved and unstarved D. plexippus caterpillars from each cardenolide treatment and nontoxic Ostrinia nubilalis Hübner caterpillars. These trials were coupled with elemental analysis of the gut and body tissues of both D. plexippus caterpillars and corn borers. Cardenolides did not affect mantid behavior: mantids gutted both cardenolide-containing and cardenolide-free caterpillars. In contrast, mantids consumed both O. nubilalis and starved D. plexippus caterpillars entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut contents, while O. nubilalis have similar ratios; gutting may reflect the mantids ability to regulate nutrient uptake. Our results suggest that post-capture prey processing by mantids is likely driven by a sophisticated assessment of resource quality.


Agricultural and Forest Entomology | 2018

Girdling increases survival and growth of emerald ash borer larvae on Manchurian ash: Manchurian ash resistance to EAB

Chad Michael Rigsby; Caterina Villari; Donnie L. Peterson; Daniel A. Herms; Pierluigi Bonello; Don Cipollini

In its native range in Asia, emerald ash borer (EAB; Agrilus planipennis Fairmaire) is a secondary colonizer of its coevolved hosts, including Manchurian ash (Fraxinus mandschurica Ruprecht). However, why larval performance is enhanced on stressed trees remains to be determined. We examined the mechanisms that may reduce the resistance of stressed Manchurian ashes. Trees in a common garden were girdled or left untreated as controls and both treatments were inoculated with EAB eggs. Larvae and bark tissue were harvested after feeding and larval performance so that the defensive mechanisms and nutritional quality of bark tissue could be assessed. Larval survival and mass was twice as high on girdled trees, although girdling had no effect on bark phenolics. The activity of two enzymes involved in wound repair and lignification (peroxidase and cinnamic alcohol dehydrogenase) was increased by girdling in bark tissue. Starch and total protein levels declined in girdled stems, although sugar content was unchanged. Total disulphide levels, a measure of protein oxidative damage, were increased by girdling, although no difference in lipid oxidative damage in ash phloem tissue was detected. Girdling ash increased larval performance even though it elevated some wound repair mechanisms and decreased some indices of plant nutritional quality. Other tree responses to girdling also were poor predictors of larval performance. It appears that mechanisms of stress‐induced variation in resistance of Manchurian ash to EAB differ from those that may explain interspecific variation in resistance.

Collaboration


Dive into the Chad Michael Rigsby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Herms

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan L. Preisser

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Niesen

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie L. Rafter

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Koch

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge