Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaim Wachtel is active.

Publication


Featured researches published by Chaim Wachtel.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Stop codons affect 5′ splice site selection by surveillance of splicing

Binghui Li; Chaim Wachtel; Elana Miriami; Galit Yahalom; Gilgi Friedlander; Gil Sharon; Ruth Sperling; Joseph Sperling

Pre-mRNA splicing involves recognition of a consensus sequence at the 5′ splice site (SS). However, only some of the many potential sites that conform to the consensus are true ones, whereas the majority remain silent and are not normally used for splicing. We noticed that in most cases the utilization of such a latent intronic 5′ SS for splicing would introduce an in-frame stop codon into the resultant mRNA. This finding suggested a link between SS selection and maintenance of an ORF within the mRNA. Here we tested this idea by analyzing the splicing of pre-mRNAs in which in-frame stop codons upstream of a latent 5′ SS were mutated. We found that splicing with the latent site is indeed activated by such mutations. Our findings predict the existence of a checking mechanism, as a component of the nuclear pre-mRNA splicing machine, to ensure the maintenance of an ORF. This notion is highly important for accurate gene expression, as perturbations that would lead to splicing at these latent sites are expected to introduce in-frame stop codons into the majority of mRNAs.


Molecular BioSystems | 2009

Splicing of mRNA precursors: the role of RNAs and proteins in catalysis

Chaim Wachtel; James L. Manley

Splicing of mRNA precursors was discovered over 30 years ago. It is one of the most complex steps in gene expression and therefore must be tightly controlled to ensure that splicing occurs efficiently and accurately. Splicing takes place in a large complex, the spliceosome, which contains approximately 200 proteins and five small RNAs (U snRNAs). Since its discovery, much work has been done to elucidate the pathway of the chemical reaction as well as the proteins and RNAs involved in catalysis. A variety of studies have established the potential for U2 and U6 snRNAs to play a role in splicing catalysis, raising the possibility that the spliceosome is a ribozyme. If correct, this would point to the spliceosomal proteins playing a supporting role during splicing. On the other hand, it may be that proteins contribute more directly to the spliceosomal active site, with the highly evolutionarily conserved Prp8 protein being an excellent candidate. This review will concentrate on recent work on splicing catalysis, and on elucidating the possible roles proteins play in this process.


Genes & Development | 2014

Drosophila TRF2 is a preferential core promoter regulator

Adi Kedmi; Yonathan Zehavi; Yair Glick; Yaron Orenstein; Diana Ideses; Chaim Wachtel; Tirza Doniger; Hiba Waldman Ben-Asher; Nemone Muster; James Thompson; Scott Anderson; Dorit Avrahami; John R. Yates; Ron Shamir; Doron Gerber; Tamar Juven-Gershon

Transcription of protein-coding genes is highly dependent on the RNA polymerase II core promoter. Core promoters, generally defined as the regions that direct transcription initiation, consist of functional core promoter motifs (such as the TATA-box, initiator [Inr], and downstream core promoter element [DPE]) that confer specific properties to the core promoter. The known basal transcription factors that support TATA-dependent transcription are insufficient for in vitro transcription of DPE-dependent promoters. In search of a transcription factor that supports DPE-dependent transcription, we used a biochemical complementation approach and identified the Drosophila TBP (TATA-box-binding protein)-related factor 2 (TRF2) as an enriched factor in the fractions that support DPE-dependent transcription. We demonstrate that the short TRF2 isoform preferentially activates DPE-dependent promoters. DNA microarray analysis reveals the enrichment of DPE promoters among short TRF2 up-regulated genes. Using primer extension analysis and reporter assays, we show the importance of the DPE in transcriptional regulation of TRF2 target genes. It was previously shown that, unlike TBP, TRF2 fails to bind DNA containing TATA-boxes. Using microfluidic affinity analysis, we discovered that short TRF2-bound DNA oligos are enriched for Inr and DPE motifs. Taken together, our findings highlight the role of short TRF2 as a preferential core promoter regulator.


Nucleic Acids Research | 2013

The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability

Sachin Kumar Gupta; Idit Kosti; Guy Plaut; Asher Pivko; Itai Dov Tkacz; Smadar Cohen-Chalamish; Dipul Kumar Biswas; Chaim Wachtel; Hiba Waldman Ben-Asher; Shai Carmi; Fabian Glaser; Yael Mandel-Gutfreund; Shulamit Michaeli

Trypanosomes are protozoan parasites that cycle between a mammalian host (bloodstream form) and an insect host, the Tsetse fly (procyclic stage). In trypanosomes, all mRNAs are trans-spliced as part of their maturation. Genome-wide analysis of trans-splicing indicates the existence of alternative trans-splicing, but little is known regarding RNA-binding proteins that participate in such regulation. In this study, we performed functional analysis of the Trypanosoma brucei heterogeneous nuclear ribonucleoproteins (hnRNP) F/H homologue, a protein known to regulate alternative splicing in metazoa. The hnRNP F/H is highly expressed in the bloodstream form of the parasite, but is also functional in the procyclic form. Transcriptome analyses of RNAi-silenced cells were used to deduce the RNA motif recognized by this protein. A purine rich motif, AAGAA, was enriched in both the regulatory regions flanking the 3′ splice site and poly (A) sites of the regulated genes. The motif was further validated using mini-genes carrying wild-type and mutated sequences in the 3′ and 5′ UTRs, demonstrating the role of hnRNP F/H in mRNA stability and splicing. Biochemical studies confirmed the binding of the protein to this proposed site. The differential expression of the protein and its inverse effects on mRNA level in the two lifecycle stages demonstrate the role of hnRNP F/H in developmental regulation.


PLOS Genetics | 2015

Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish

Adi Shamay-Ramot; Khen Khermesh; Hagit T. Porath; Michal Barak; Yishay Pinto; Chaim Wachtel; Alona Zilberberg; Tali Lerer-Goldshtein; Sol Efroni; Erez Y. Levanon; Lior Appelbaum

Fragile X syndrome (FXS) is the most frequent inherited form of mental retardation. The cause for this X-linked disorder is the silencing of the fragile X mental retardation 1 (fmr1) gene and the absence of the fragile X mental retardation protein (Fmrp). The RNA-binding protein Fmrp represses protein translation, particularly in synapses. In Drosophila, Fmrp interacts with the adenosine deaminase acting on RNA (Adar) enzymes. Adar enzymes convert adenosine to inosine (A-to-I) and modify the sequence of RNA transcripts. Utilizing the fmr1 zebrafish mutant (fmr1-/-), we studied Fmrp-dependent neuronal circuit formation, behavior, and Adar-mediated RNA editing. By combining behavior analyses and live imaging of single axons and synapses, we showed hyperlocomotor activity, as well as increased axonal branching and synaptic density, in fmr1-/- larvae. We identified thousands of clustered RNA editing sites in the zebrafish transcriptome and showed that Fmrp biochemically interacts with the Adar2a protein. The expression levels of the adar genes and Adar2 protein increased in fmr1-/- zebrafish. Microfluidic-based multiplex PCR coupled with deep sequencing showed a mild increase in A-to-I RNA editing levels in evolutionarily conserved neuronal and synaptic Adar-targets in fmr1-/- larvae. These findings suggest that loss of Fmrp results in increased Adar-mediated RNA editing activity on target-specific RNAs, which, in turn, might alter neuronal circuit formation and behavior in FXS.


Nucleic Acids Research | 2010

‘RNA walk’ a novel approach to study RNA–RNA interactions between a small RNA and its target

Yaniv Lustig; Chaim Wachtel; Mark Safro; Li Liu; Shulamit Michaeli

In this study we describe a novel method to investigate the RNA–RNA interactions between a small RNA and its target that we termed ‘RNA walk’. The method is based on UV-induced AMT cross-linking in vivo followed by affinity selection of the hybrid molecules and mapping the intermolecular adducts by RT–PCR or real-time PCR. Domains carrying the cross-linked adducts fail to efficiently amplify by PCR compared with non-cross-linked domains. This method was calibrated and used to study the interaction between a special tRNA-like molecule (sRNA-85) that is part of the trypanosome signal recognition particle (SRP) complex and the ribosome. Four contact sites between sRNA-85 and rRNA were identified by ‘RNA walk’ and were further fine-mapped by primer extension. Two of the contact sites are expected; one contact site mimics the interaction of the mammalian Alu domain of SRP with the ribosome and the other contact sites include a canonical tRNA interaction. The two other cross-linked sites could not be predicted. We propose that ‘RNA walk, is a generic method to map target RNA small RNAs interactions in vivo.


Nucleic Acids Research | 2010

Establishment of an in vitro trans-splicing system in Trypanosoma brucei that requires endogenous spliced leader RNA.

Hadassa Shaked; Chaim Wachtel; Pawel Tulinski; Nasreen Hag Yahia; Omer Barda; Edward Darzynkiewicz; Timothy W. Nilsen; Shulamit Michaeli

In trypanosomes a 39 nucleotide exon, the spliced leader (SL) is donated to all mRNAs from a small RNA, the SL RNA, by trans-splicing. Since the discovery of trans-splicing in trypanosomes two decades ago, numerous attempts failed to reconstitute the reaction in vitro. In this study, a crude whole-cell extract utilizing the endogenous SL RNA and synthetic tubulin pre-mRNA were used to reconstitute the trans-splicing reaction. An RNase protection assay was used to detect the trans-spliced product. The reaction was optimized and shown to depend on ATP and intact U2 and U6 snRNPs. Mutations introduced at the polypyrimidine tract and the AG splice site reduced the reaction efficiency. To simplify the assay, RT–PCR and quantitative real-time PCR assays were established. The system was used to examine the structural requirements for SL RNA as a substrate in the reaction. Interestingly, synthetic SL RNA assembled poorly to its cognate particle and was not utilized in the reaction. However, SL RNA synthesized in cells lacking Sm proteins, which is defective in cap-4 modification, was active in the reaction. This study is the first step towards further elucidating the mechanism of trans-splicing, an essential reaction which determines the trypanosome transcriptome.


Scientific Reports | 2016

SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

Dana Chen; Yaron Orenstein; Rada Golodnitsky; Michal Pellach; Dorit Avrahami; Chaim Wachtel; Avital Ovadia-Shochat; Hila Shir-Shapira; Adi Kedmi; Tamar Juven-Gershon; Ron Shamir; Doron Gerber

Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression.


BMC Genomics | 2010

A comparative genome-wide study of ncRNAs in trypanosomatids

Tirza Doniger; Rodolfo Katz; Chaim Wachtel; Shulamit Michaeli; Ron Unger

BackgroundRecent studies have provided extensive evidence for multitudes of non-coding RNA (ncRNA) transcripts in a wide range of eukaryotic genomes. ncRNAs are emerging as key players in multiple layers of cellular regulation. With the availability of many whole genome sequences, comparative analysis has become a powerful tool to identify ncRNA molecules. In this study, we performed a systematic genome-wide in silico screen to search for novel small ncRNAs in the genome of Trypanosoma brucei using techniques of comparative genomics.ResultsIn this study, we identified by comparative genomics, and validated by experimental analysis several novel ncRNAs that are conserved across multiple trypanosomatid genomes. When tested on known ncRNAs, our procedure was capable of finding almost half of the known repertoire through homology over six genomes, and about two-thirds of the known sequences were found in at least four genomes. After filtering, 72 conserved unannotated sequences in at least four genomes were found, 29 of which, ranging in size from 30 to 392 nts, were conserved in all six genomes. Fifty of the 72 candidates in the final set were chosen for experimental validation. Eighteen of the 50 (36%) were shown to be expressed, and for 11 of them a distinct expression product was detected, suggesting that they are short ncRNAs. Using functional experimental assays, five of the candidates were shown to be novel H/ACA and C/D snoRNAs; these included three sequences that appear as singletons in the genome, unlike previously identified snoRNA molecules that are found in clusters. The other candidates appear to be novel ncRNA molecules, and their function is, as yet, unknown.ConclusionsUsing comparative genomic techniques, we predicted 72 sequences as ncRNA candidates in T. brucei. The expression of 50 candidates was tested in laboratory experiments. This resulted in the discovery of 11 novel short ncRNAs in procyclic stage T. brucei, which have homologues in the other trypansomatids. A few of these molecules are snoRNAs, but most of them are novel ncRNA molecules. Based on this study, our analysis suggests that the total number of ncRNAs in trypanosomatids is in the range of several hundred.


Microbial Ecology | 2016

Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space

Varsik Martirosyan; Adrian Unc; Gad Miller; Tirza Doniger; Chaim Wachtel; Yosef Steinberger

Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a “temporary host” and the biotic-community parameters in extreme xeric environments.

Collaboration


Dive into the Chaim Wachtel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Sperling

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge