Chaitali Ghosh
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaitali Ghosh.
Neurobiology of Disease | 2009
Nicola Marchi; Qingyuan Fan; Chaitali Ghosh; Vincent Fazio; Francesca Bertolini; Giulia Betto; Ayush Batra; Erin Carlton; Imad Najm; Tiziana Granata; Damir Janigro
Status epilepticus (SE) is one of the most serious manifestations of epilepsy. Systemic inflammation and damage of blood-brain barrier (BBB) are etiologic cofactors in the pathogenesis of pilocarpine SE while acute osmotic disruption of the BBB is sufficient to elicit seizures. Whether an inflammatory-vascular-BBB mechanism could apply to the lithium-pilocarpine model is unknown. LiCl facilitated seizures induced by low-dose pilocarpine by activation of circulating T-lymphocytes and mononuclear cells. Serum IL-1beta levels increased and BBB damage occurred concurrently to increased theta EEG activity. These events occurred prior to SE induced by cholinergic exposure. SE was elicited by lithium and pilocarpine irrespective of their sequence of administration supporting a common pathogenetic mechanism. Since IL-1beta is an etiologic trigger for BBB breakdown and its serum elevation occurs before onset of SE early after LiCl and pilocarpine injections, we tested the hypothesis that intravenous administration of IL-1 receptor antagonists (IL-1ra) may prevent pilocarpine-induced seizures. Animals pre-treated with IL-1ra exhibited significant reduction of SE onset and of BBB damage. Our data support the concept of targeting systemic inflammation and BBB for the prevention of status epilepticus.
PLOS ONE | 2013
Nicola Marchi; Jeffrey J. Bazarian; Vikram Puvenna; Mattia Janigro; Chaitali Ghosh; Jianhui Zhong; Tong Zhu; Eric Blackman; Desiree Stewart; Jasmina Ellis; Robert S. Butler; Damir Janigro
The acknowledgement of risks for traumatic brain injury in American football players has prompted studies for sideline concussion diagnosis and testing for neurological deficits. While concussions are recognized etiological factors for a spectrum of neurological sequelae, the consequences of sub-concussive events are unclear. We tested the hypothesis that blood-brain barrier disruption (BBBD) and the accompanying surge of the astrocytic protein S100B in blood may cause an immune response associated with production of auto-antibodies. We also wished to determine whether these events result in disrupted white matter on diffusion tensor imaging (DT) scans. Players from three college football teams were enrolled (total of 67 volunteers). None of the players experienced a concussion. Blood samples were collected before and after games (n = 57); the number of head hits in all players was monitored by movie review and post-game interviews. S100B serum levels and auto-antibodies against S100B were measured and correlated by direct and reverse immunoassays (n = 15 players; 5 games). A subset of players underwent DTI scans pre- and post-season and after a 6-month interval (n = 10). Cognitive and functional assessments were also performed. After a game, transient BBB damage measured by serum S100B was detected only in players experiencing the greatest number of sub-concussive head hits. Elevated levels of auto-antibodies against S100B were elevated only after repeated sub-concussive events characterized by BBBD. Serum levels of S100B auto-antibodies also predicted persistence of MRI-DTI abnormalities which in turn correlated with cognitive changes. Even in the absence of concussion, football players may experience repeated BBBD and serum surges of the potential auto-antigen S100B. The correlation of serum S100B, auto-antibodies and DTI changes support a link between repeated BBBD and future risk for cognitive changes.
Epilepsia | 2012
Nicola Marchi; Tiziana Granata; Chaitali Ghosh; Damir Janigro
The blood–brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte–endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB‐centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add‐on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs.
Brain Research | 2010
Nicola Marchi; Qingshan Teng; Chaitali Ghosh; Qingyuan Fan; Minh T. Nguyen; Nirav K. Desai; Harpreet Bawa; Peter A. Rasmussen; Thomas K. Masaryk; Damir Janigro
It has long been held that chronic seizures cause blood-brain barrier (BBB) damage. Recent studies have also demonstrated that BBB damage triggers seizures. We have used the BBB osmotic disruption procedure (BBBD) to examine the correlation between BBB opening, pattern of white blood cell (WBCs) entry into the brain and seizure occurrence. These findings were compared to results from resected epileptic brain tissue from temporal lobe epilepsy (TLE) patients. We confirmed that a successful BBB osmotic opening (BBBD) leads to the occurrence of acute epileptiform discharges. Electroencephalography (EEG) and time-joint frequency analysis reveal EEG slowing followed by an increase in the 10-20Hz frequency range. Using green fluorescent protein (GFP)-labeled WBCs (GFP-WBCs) suspended in Evans Blue we found that, at time of BBB-induced epileptiform discharges, WBCs populated the perivascular space of a leaky BBB. Similar results were obtained at time of pilocarpine seizure. No frank WBCs extravasation in the brain parenchyma was observed. In TLE brain specimens, CD45-positive leukocytes were detected only in the vascular and perivascular spaces while albumin and IgG extravasates were parenchymal. The pattern was similar to those observed in rats. Our data suggest that neither acute-induced nor chronic seizures correlate with WBC brain parenchymal migration while albumin and IgG brain leakage is a hallmark of acute and chronic seizures.
Epilepsia | 2010
Chaitali Ghosh; Jorge Gonzalez-Martinez; Mohammed Hossain; Luca Cucullo; Vincent Fazio; Damir Janigro; Nicola Marchi
Purpose: P450 enzymes (CYPs) play a major role in hepatic drug metabolism. It is unclear whether these enzymes are functionally expressed by the diseased human blood–brain barrier (BBB) and are involved in local drug metabolism or response. We have evaluated the cerebrovascular CYP expression and function, hypothesizing possible implication in drug‐resistant epilepsy.
Advanced Drug Delivery Reviews | 2012
Laura Biddlestone-Thorpe; Nicola Marchi; Kathy Guo; Chaitali Ghosh; Damir Janigro; Hu Yang
Research into the diagnosis and treatment of central nervous system (CNS) diseases has been enhanced by rapid advances in nanotechnology and an expansion in the library of nanostructured carriers. This review discusses the latest applications of nanomaterials in the CNS with an emphasis on brain tumors. Novel administration routes and transport mechanisms for nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents to bypass or cross the blood brain barrier (BBB) are also discussed. These include temporary disruption of the BBB, use of impregnated polymers (polymer wafers), convection-enhanced delivery (CED), and intranasal delivery. Moreover, an in vitro BBB model capable of mimicking geometrical, cellular and rheological features of the human cerebrovasculature has been developed. This is a useful tool that can be used for screening CNS nanoparticles or therapeutics prior to in vivo and clinical investigation. A discussion of this novel model is included.
Epilepsia | 2011
Chaitali Ghosh; Nicola Marchi; Nirav K. Desai; Vikram Puvenna; Mohammed Hossain; Jorge Gonzalez-Martinez; Andreas V. Alexopoulos; Damir Janigro
Purpose: Compelling evidence supports the presence of P450 enzymes (CYPs) in the central nervous system (CNS). However, little information is available on the localization and function of CYPs in the drug‐resistant epileptic brain. We have evaluated the pattern of expression of the specific enzyme CYP3A4 and studied its co‐localization with MDR1. We also determined whether an association exists between CYP3A4 expression and cell survival.
Epilepsia | 2011
Nicola Marchi; Aaron J. Johnson; Vikram Puvenna; Holly Johnson; William S. Tierney; Chaitali Ghosh; Luca Cucullo; Paolo F. Fabene; Damir Janigro
Purpose: A link between seizure susceptibility, blood–brain barrier (BBB) failure, and the activation of peripheral white blood cells has been recently proposed. However, the molecular players involved in this cascade of events are unknown. We tested the hypothesis that immunosupression by splenectomy or lack of perforin, a downstream factor of natural killer (NK) and cytotoxic T cells, could reduce seizure onset.
Epilepsia | 2009
Nicola Marchi; Giulia Betto; Vincent Fazio; Quinyuan Fan; Chaitali Ghosh; Andre G. Machado; Damir Janigro
Purpose: Increased blood–brain barrier (BBB) permeability is radiologically detectable in regions affected by drug‐resistant epileptogenic lesions. Brain penetration of antiepileptic drugs (AEDs) may be affected by BBB damage. We studied the effects of BBB damage on brain distribution of hydrophilic [deoxy‐glucose (DOG) and sucrose] and lipophilic (phenytoin and diazepam) molecules. We tested the hypothesis that lipophilic and hydrophilic drug distribution is differentially affected by BBB damage.
Brain Research | 2016
Vikram Puvenna; Madeline Engeler; Manoj Banjara; Chanda Brennan; Peter Schreiber; Aaron Dadas; Ashkon Bahrami; Jesal Solanki; Anasua Bandyopadhyay; Jacqueline K. Morris; Charles Bernick; Chaitali Ghosh; Edward Rapp; Jeffrey J. Bazarian; Damir Janigro
Repetitive traumatic brain injury (rTBI) is one of the major risk factors for the abnormal deposition of phosphorylated tau (PT) in the brain and chronic traumatic encephalopathy (CTE). CTE and temporal lobe epilepsy (TLE) affect the limbic system, but no comparative studies on PT distribution in TLE and CTE are available. It is also unclear whether PT pathology results from repeated head hits (rTBI). These gaps prevent a thorough understanding of the pathogenesis and clinical significance of PT, limiting our ability to develop preventative and therapeutic interventions. We quantified PT in TLE and CTE to unveil whether a history of rTBI is a prerequisite for PT accumulation in the brain. Six postmortem CTE (mean 73.3 years) and age matched control samples were compared to 19 surgically resected TLE brain specimens (4 months-58 years; mean 27.6 years). No history of TBI was present in TLE or control; all CTE patients had a history of rTBI. TLE and CTE brain displayed increased levels of PT as revealed by immunohistochemistry. No age-dependent changes were noted, as PT was present as early as 4 months after birth. In TLE and CTE, cortical neurons, perivascular regions around penetrating pial vessels and meninges were immunopositive for PT; white matter tracts also displayed robust expression of extracellular PT organized in bundles parallel to venules. Microscopically, there were extensive tau-immunoreactive neuronal, astrocytic and degenerating neurites throughout the brain. In CTE perivascular tangles were most prominent. Overall, significant differences in staining intensities were found between CTE and control (P<0.01) but not between CTE and TLE (P=0.08). pS199 tau analysis showed that CTE had the most high molecular weight tangle-associated tau, whereas epileptic brain contained low molecular weight tau. Tau deposition may not be specific to rTBI since TLE recapitulated most of the pathological features of CTE.