Chaitanya S. Deo
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chaitanya S. Deo.
Journal of Physics: Condensed Matter | 2010
Benjamin Beeler; B. Good; S Rashkeev; Chaitanya S. Deo; M. I. Baskes; Maria A. Okuniewski
Uranium (U) exhibits a high temperature body-centered cubic (bcc) allotrope that is often stabilized by alloying with transition metals such as Zr, Mo, and Nb for technological applications. One such application involves U-Zr as nuclear fuel, where radiation damage and diffusion (processes heavily dependent on point defects) are of vital importance. Several systems of U are examined within a density functional theory framework utilizing projector augmented wave pseudopotentials. Two separate generalized gradient approximations of the exchange-correlation are used to calculate defect properties and are compared. The bulk modulus, the lattice constant, and the Birch-Murnaghan equation of state for the defect free bcc uranium allotrope are calculated. Defect parameters calculated include energies of formation of vacancies in the α and γ allotropes, as well as self-interstitials, Zr interstitials, and Zr substitutional defects for the γ allotrope. The results for vacancies agree very well with experimental and previous computational studies. The most probable self-interstitial site in γ-U is the (110) dumbbell, and the most probable defect location for dilute Zr in γ-U is the substitutional site. This is the first detailed study of self-defects in the bcc allotrope of U and also the first comprehensive study of dilute Zr defects in γ-U.
Journal of Physics: Condensed Matter | 2012
Erin Hayward; Chaitanya S. Deo
The detrimental effects of hydrogen and helium on structural materials undergoing irradiation are well documented, if not well understood. There is experimental evidence to suggest that a synergistic effect between the two elements exists, which results in increased damage when both are present. This situation is expected in the next generation of fusion and fission reactors, so a fundamental understanding of these synergistic interactions is needed to predict materials performance. We perform atomistic simulations of hydrogen and helium bubbles in body-centered cubic iron to determine the mechanism behind this effect. We first develop an interatomic potential suitable for describing the interactions between hydrogen and helium. Through analysis of the energetics and structure of these bubbles, we explain the observed synergy as a consequence of bubble growth through helium induced loop punching, aided by the presence of hydrogen, instead of as a direct interaction between hydrogen and helium. The hydrogen benefits from an increased area of free surface on which to bind.
Journal of Physics: Condensed Matter | 2012
Benjamin Beeler; Chaitanya S. Deo; Mmichael Baskes; Maria A. Okuniewski
The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.
Journal of Physics: Condensed Matter | 2011
Erin Hayward; Chaitanya S. Deo
Hydrogen may be trapped in voids in iron, leading to undesirable material properties. In this paper, the energetics of small hydrogen-vacancy clusters in body centered cubic iron are investigated. Results from two interatomic potentials are compared. We use molecular dynamics and Monte Carlo methods to find the minimum energy configurations of voids of up to ten vacancies containing up to 50 hydrogen atoms with ratios of hydrogen to vacancy of 10 or less. The formation energies and binding energies of defects to these clusters are calculated. Our results indicate that the hydrogen stabilizes bubbles by causing vacancies to be more tightly bound to clusters, while neighboring irons are less tightly bound. Hydrogen itself becomes less well bound to clusters as the inventory increases. The more physically relevant potential indicates a maximum supported ratio of hydrogen atoms to vacancies of about 4.
Philosophical Magazine Letters | 2012
Erin Hayward; Benjamin Beeler; Chaitanya S. Deo
Novel structures for multiple hydrogen atoms trapped at a monovacancy are discussed. Using atomistic simulations based on semiempirical interatomic potentials and density functional theory, we find low-energy configurations for four, five, and six hydrogen atoms around a monovacancy different than those that have been previously studied in the literature. The energetics of hydrogen binding are compared to results, both theoretical and experimental, previously published in the literature. We argue that up to four hydrogen atoms may be exothermically bound to monovacancy.
Philosophical Magazine | 2012
Erin Hayward; Chaitanya S. Deo; Blas P. Uberuaga; C.N. Tomé
In this study, we calculate the interaction energy of intrinsic point defects vacancies and interstitials) with screw dislocations in body-centered cubic iron. First (we calculate the dipole tensor of a defect in the bulk crystal using molecular statics. Using a formulation based on linear elasticity theory, we calculate the interaction energy of the defect and the dislocation using both isotropic and anisotropic strain fields. Second, we perform atomistic calculations using molecular statics methods to directly calculate the interaction energy. Results from these two methods are compared. We verify that continuum methods alone are unable to correctly predict the interactions of defects and dislocations near the core. Although anisotropic theory agrees qualitatively with atomistics far from the core, it cannot predict which dumbbell orientations are stable and any continuum calculations must be used with caution. Spontaneous absorption by the core of both vacancies and dumbbells is seen. This paper demonstrates and discusses the differences between continuum and atomistic calculations of interaction energy between a dislocation core and a point defect.
Journal of Applied Physics | 2017
Shuozhi Xu; Jacob K. Startt; Thomas G. Payne; Chaitanya S. Deo; David L. McDowell
Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocatio...
Journal of Astm International | 2007
Chaitanya S. Deo; S. G. Srinivasan; M. I. Baskes; S.A. Maloy; Michael R. James; Maria A. Okuniewski; James F. Stubbins
We study the mechanisms by which gas atoms such as helium and hydrogen diffuse and interact with other defects in bcc metals and investigate the effect of these mechanisms on the nucleation of embryonic gas bubbles. Large quantities of helium and hydrogen are produced due to spallation and transmutation in structural materials in fusion and accelerator-driven reactors. The long time evolution of the extrinsic gas atoms and their accumulation at vacancies is studied using a kinetic Monte Carlo algorithm that is parameterized by the migration energies of the point defect entities. First-order reaction kinetics are observed when gas clusters with vacancies. If gas-gas clustering is allowed, mixed-order diffusion limited kinetics are observed. When dissociation of gas from clusters is allowed, gas-vacancy clusters survive to steady state while gas-gas clusters dissolve. We obtain cluster size distributions and reaction rate constants that can be used to quantify microstructural evolution of the irradiated metal.
Fusion Science and Technology | 2012
Erin Hayward; Chaitanya S. Deo
Understanding the interactions of hydrogen and helium within ferritic steels will aid in the development of materials appropriate for next generation nuclear reactors. We discuss interatomic potentials appropriate for simulating these elements, presenting a potential for the H-He interactions. Preliminary results for small H-He bubbles in bcc iron are given and discussed.
International Confernece Pacific Basin Nuclear Conference | 2016
Bojan Petrovic; Farzad Rahnema; Chaitanya S. Deo; Srinivas Garimella; Preet M. Singh; KkochNim Oh; Ce Yi; Dingkang Zhang; Annalisa Manera; John J. Lee; Thomas Downar; Andrew Ward; Paolo Ferroni; Fausto Franceschini; David Salazar; Belle R. Upadhyaya; Matt Lish; Indrajit Charit; Alireza Haghighat; Matthew J. Memmott; Guy A. Boy; Abderrafi M. Ougouag; Geoffrey T. Parks; Dan Kotlyar; Marco E. Ricotti; Nikola Čavlina; Davor Grgić; Dubravko Pevec; Mario Matijević; Nick Irvin
Pressurized water reactor of integral configuration (iPWR) offers inherent safety features, such as the possibility to completely eliminate large-break LOCA and control rod ejection. However, integral configuration implemented using the current PWR technology leads to a larger reactor vessel, which in turn, due to the vessel manufacturability and transportability restrictions, limits the reactor power. It is reflected in the fact that there are many proposed iPWR SMR concepts, with power levels up to approximately 300 MWe, but not many iPWR concepts with power level corresponding to that of large traditional PWR NPPs (900 MWe or higher). While SMRs offer certain advantages, they also have specific challenges. Moreover, large energy markets tend to prefer NPPs with larger power. The Integral Inherently Safe Light Water Reactor (I2S-LWR) concept is an integral PWR, of larger power level (1000 MWe), that at the same time features integral configurations, and inherent safety features typically found only in iPWR SMRs. This is achieved by employing novel, more compact, technologies that simultaneously enable integral configuration, large power, and acceptable size reactor vessel. This concept is being developed since 2013 through a DOE-supported Integrated Research Project (IRP) in Nuclear Engineering University Programs (NEUP). The project led by Georgia Tech includes thirteen other national and international organizations from academia (University of Michigan, University of Tennessee, University of Idaho, Virginia Tech, Florida Institute of Technology, Brigham Young University, Morehouse College, University of Cambridge, Politecnico di Milano, and University of Zagreb), industry (Westinghouse Electric Company and Southern Nuclear), and Idaho National Laboratory. This concept introduces and integrates several novel technologies, including high power density core, silicide fuel, fuel/cladding system with enhanced accident tolerance, and primary micro-channel heat exchangers integrated with flashing drums into innovative power conversion system. Many inherent safety features are implemented as well, based on all passive safety systems, enhancing its safety performance parameters. The concept aims to provide both the enhanced safety and economics and offers the next evolutionary step beyond the Generation III + systems. This paper presents some details on the concept design and its safety systems and features, together with an update of the project progress.