Chamsy Sarkis
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chamsy Sarkis.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Stéphanie Philippe; Chamsy Sarkis; Martine Barkats; Hamid Mammeri; Charline Ladroue; Caroline Petit; Jacques Mallet; Che Serguera
Lentivirus-derived vectors are among the most promising viral vectors for gene therapy currently available, but their use in clinical practice is limited by the associated risk of insertional mutagenesis. We have overcome this problem by developing a nonintegrative lentiviral vector derived from HIV type 1 with a class 1 integrase (IN) mutation (replacement of the 262RRK motif by AAH). We generated and characterized HIV type 1 vectors carrying this deficient enzyme and expressing the GFP or neomycin phosphotransferase transgene (NEO) under control of the immediate early promoter of human CMV. These mutant vectors efficiently transduced dividing cell lines and nondividing neural primary cultures in vitro. After transduction, transient GFP fluorescence was observed in dividing cells, whereas long-term GFP fluorescence was observed in nondividing cells, consistent with the viral genome remaining episomal. Moreover, G418 selection of cells transduced with vectors expressing the NEO gene showed that residual integration activity was lower than that of the intact IN by a factor of 500–1,250. These nonintegrative vectors were also efficient in vivo, allowing GFP expression in mouse brain cells after the stereotactic injection of IN-deficient vector particles. Thus, we have developed a generation of lentiviral vectors with a nonintegrative phenotype of great potential value for secure viral gene transfer in clinical applications.
Nature Biotechnology | 2001
Véronique Zennou; Che Serguera; Chamsy Sarkis; Philippe Colin; Emmanuelle Perret; Jacques Mallet; Pierre Charneau
During HIV-1 reverse transcription, central initiation of the plus-strand DNA at the central polypurine tract (cPPT) and central termination at the central termination sequence (CTS) lead to the formation of a three-stranded DNA structure: the HIV-1 central DNA flap. We recently reported that the DNA flap acts as a cis-active determinant of HIV-1 genome nuclear import. Commonly employed HIV-1–derived vectors (HR vectors) lack the central DNA flap. Here we report that the insertion of this DNA flap sequence into HR vectors (TRIP vectors) improves gene transduction in neural cells, ex vivo and in vivo, in rat brain. When neural cells are exposed to increasing concentrations of TRIP vector particles, transgene expression correlates with the dose of vector. This effect contrasts with the plateau observed when using an HR vector. We further demonstrate that the increase of in vivo transduction efficiency obtained with TRIP vectors is due to the stimulation of their genome nuclear import.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Cyril Couturier; Chamsy Sarkis; Karin Séron; Sandrine Belouzard; Patty Chen; Aude Lenain; Laetitia Corset; Julie Dam; Virginie Vauthier; Anne Dubart; Jacques Mallet; Philippe Froguel; Yves Rouillé; Ralf Jockers
Obesity is a major public health problem and is often associated with type 2 diabetes mellitus, cardiovascular disease, and metabolic syndrome. Leptin is the crucial adipostatic hormone that controls food intake and body weight through the activation of specific leptin receptors (OB-R) in the hypothalamic arcuate nucleus (ARC). However, in most obese patients, high circulating levels of leptin fail to bring about weight loss. The prevention of this “leptin resistance” is a major goal for obesity research. We report here a successful prevention of diet-induced obesity (DIO) by silencing a negative regulator of OB-R function, the OB-R gene-related protein (OB-RGRP), whose transcript is genetically linked to the OB-R transcript. We provide in vitro evidence that OB-RGRP controls OB-R function by negatively regulating its cell surface expression. In the DIO mouse model, obesity was prevented by silencing OB-RGRP through stereotactic injection of a lentiviral vector encoding a shRNA directed against OB-RGRP in the ARC. This work demonstrates that OB-RGRP is a potential target for obesity treatment. Indeed, regulators of the receptor could be more appropriate targets than the receptor itself. This finding could serve as the basis for an approach to identifying potential new therapeutic targets for a variety of diseases, including obesity.
European Journal of Neuroscience | 1998
Caryn Trocmé; Chamsy Sarkis; Jean-Michel Hermel; René Duchateau; Stephen Harrison; Michel Simonneau; Raya Al-Shawi; Jacques Mallet
Tyrosine hydroxylase (TH), the rate‐limiting enzyme in the biosynthesis of catecholamine neurotransmitters, is expressed in a restricted number of areas, and subject to numerous regulations during development and in adulthood. Two transcription factor binding sites present in the proximal region of the TH gene, the TPA‐responsive element (TRE) and the c‐AMP responsive element (CRE), have been shown to play important roles in TH gene regulation in vitro. In order to elucidate in vivo the role of these two sites, we produced transgenic mice bearing a 5.3‐kb fragment from the 5′ flanking sequence of the TH gene with mutations in either the CRE‐ or TRE‐sites. Using the intact 5.3‐kb fragment fused to two different reporter genes (HSV1‐tk and lacZ), we show that this promoter fragment is able to specifically direct expression in catecholaminergic tissues both in adult mice and embryos. Interestingly, the CRE‐ and TRE‐mutated transgenes were not expressed in adult mice, contrary to the situation in embryos where they were specifically expressed in catecholaminergic regions. These results demonstrate that the CRE and TRE play an essential role in basal TH expression in adult tissues in vivo. Moreover, they suggest that distinct transcription factors are involved in TH regulation in developing and adult tissues. In support of this, gel mobility shift experiments revealed a complex present only in embryonic tissues. Taken together, these data highlight the diversity of the mechanisms underlying the establishment and maintenance of the catecholaminergic phenotype.
Neurobiology of Aging | 2008
M. Pertusa; Silvia García-Matas; H. Mammeri; Albert Adell; T. Rodrigo; J. Mallet; Rosa Cristòfol; Chamsy Sarkis; Coral Sanfeliu
Glial cell line-derived neurotrophic factor (GDNF) was assayed for its neurotrophic effects against the neuronal atrophy that causes cognitive deficits in old age. Aged Fisher 344 rats with impairment in the Morris water maze received intrahippocampal injections at the dorsal CA1 area of either a lentiviral vector encoding human GDNF or the same vector encoding human green fluorescent protein as a control. Recombinant lentiviral vectors constructed with human cytomegalovirus promotor and pseudotyped with lyssavirus Mokola glycoprotein specifically transduced the astrocytes in vivo. Astrocyte-secreted GDNF enhanced neuron function as shown by local increases in synthesis of the neurotransmitters acetylcholine, dopamine and serotonin. This neurotrophic effect led to cognitive improvement of the rats as early as 2 weeks after gene transduction. Spatial learning and memory testing showed a significant gain in cognitive abilities due to GDNF exposure, whereas control-transduced rats kept their performance at the chance level. These results confirm the broad spectrum of the neurotrophic action of GDNF and open new gene therapy possibilities for reducing age-related neurodegeneration.
PLOS Genetics | 2013
Riyad El-Khoury; Eric Dufour; Malgorzata Rak; Nelina Ramanantsoa; Nicolas Grandchamp; Zsolt Csaba; Bertrand Duvillié; Paule Bénit; Jorge Gallego; Pierre Gressens; Chamsy Sarkis; Howard T. Jacobs; Pierre Rustin
Cyanide-resistant non-phosphorylating respiration is known in mitochondria from plants, fungi, and microorganisms but is absent in mammals. It results from the activity of an alternative oxidase (AOX) that conveys electrons directly from the respiratory chain (RC) ubiquinol pool to oxygen. AOX thus provides a bypath that releases constraints on the cytochrome pathway and prevents the over-reduction of the ubiquinone pool, a major source of superoxide. RC dysfunctions and deleterious superoxide overproduction are recurrent themes in human pathologies, ranging from neurodegenerative diseases to cancer, and may be instrumental in ageing. Thus, preventing RC blockade and excess superoxide production by means of AOX should be of considerable interest. However, because of its energy-dissipating properties, AOX might produce deleterious effects of its own in mammals. Here we show that AOX can be safely expressed in the mouse (MitAOX), with major physiological parameters being unaffected. It neither disrupted the activity of other RC components nor decreased oxidative phosphorylation in isolated mitochondria. It conferred cyanide-resistance to mitochondrial substrate oxidation and decreased reactive oxygen species (ROS) production upon RC blockade. Accordingly, AOX expression was able to support cyanide-resistant respiration by intact organs and to afford prolonged protection against a lethal concentration of gaseous cyanide in whole animals. Taken together, these results indicate that AOX expression in the mouse is innocuous and permits to overcome a RC blockade, while reducing associated oxidative insult. Therefore, the MitAOX mice represent a valuable tool in order to investigate the ability of AOX to counteract the panoply of mitochondrial-inherited diseases originating from oxidative phosphorylation defects.
CNS Neuroscience & Therapeutics | 2014
Susana Revilla; Suzanna Ursulet; María Jesús Álvarez-López; Marco Castro-Freire; Unai Perpiñá; Yoelvis García-Mesa; Analía Bortolozzi; Lydia Giménez-Llort; Perla Kaliman; Rosa Cristòfol; Chamsy Sarkis; Coral Sanfeliu
Glial cell‐derived neurotrophic factor (GDNF) is emerging as a potent neurotrophic factor with therapeutic potential against a range of neurodegenerative conditions including Alzheimers disease (AD). We assayed the effects of GDNF treatment in AD experimental models through gene‐therapy procedures.
Journal of Gene Medicine | 2005
Alexis-Pierre Bemelmans; Sébastien Bonnel; Leïla Houhou; Noelle Dufour; Emeline F. Nandrot; Dominique Helmlinger; Chamsy Sarkis; Marc Abitbol; Jacques Mallet
Gene therapy, and particularly gene restoration, is currently a great hope for non‐curable hereditary retinal degeneration. Clinical applications require a gene transfer vector capable of accurately targeting particular cell types in the retina. To develop such a vector, we compared the expression of a reporter gene after subretinal injections of lentiviral constructs of various pseudotypes and with the transgene expression driven by various promoters.
Molecular Neurobiology | 2017
Rubén Corpas; Susana Revilla; Suzanna Ursulet; Marco Castro-Freire; Perla Kaliman; Valérie Petegnief; Lydia Giménez-Llort; Chamsy Sarkis; Mercè Pallàs; Coral Sanfeliu
SIRT1 induces cell survival and has shown neuroprotection against amyloid and tau pathologies in Alzheimer’s disease (AD). However, protective effects against memory loss or the enhancement of cognitive functions have not yet been proven. We aimed to investigate the benefits induced by SIRT1 overexpression in the hippocampus of the AD mouse model 3xTg-AD and in control non-transgenic mice. A lentiviral vector encoding mouse SIRT1 or GFP, selectively transducing neurons, was injected into the dorsal CA1 hippocampal area of 4-month-old mice. Six-month overexpression of SIRT1 fully preserved learning and memory in 10-month-old 3xTg-AD mice. Remarkably, SIRT1 also induced cognitive enhancement in healthy non-transgenic mice. Neuron cultures of 3xTg-AD mice, which show traits of AD-like pathology, and neuron cultures from non-transgenic mice were also transduced with lentiviral vectors to analyze beneficial SIRT1 mechanisms. We uncovered novel pathways of SIRT1 neuroprotection through enhancement of cell proteostatic mechanisms and activation of neurotrophic factors not previously reported such as GDNF, present in both AD-like and healthy neurons. Therefore, SIRT1 may increase neuron function and resilience against AD.
Journal of Neuroscience Research | 2003
Jean-Luc Ridet; Chamsy Sarkis; Che Serguera; Véronique Zennou; Pierre Charneau; Jacques Mallet
Ex vivo gene therapy is emerging as a promising approach for the treatment of neurodegenerative diseases and central nervous system (CNS) trauma. We have shown previously that human adult astrocytes can be expanded in vitro and can express various therapeutic transgenes (Ridet et al. [ 1999 ] Hum. Gene Ther. 10:271–280; Serguera et al. [ 2001 ] Mol. Ther. 3:875–881). Here, we grafted normal and lentivirally‐modified human adult astrocytes into the striatum and spinal cord of nude mice to test whether they are suitable candidates for ex vivo CNS gene therapy. Transplanted cells survived for at least 2 months (longest time analyzed) and sustained transgene expression. Importantly, the absence of proliferating cell nuclear antigen (PCNA) staining, a hallmark of cell division, ascertains the safety of these cells. Thus, adult human astrocytes are a promising tool for human CNS repair; they may make autologous ex vivo gene transfer feasible, thereby avoiding the problems of immunological rejection and the side effects of immunosuppressors.