Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chan Du.
Nature Communications | 2013
Meng Fatt Leong; Jerry K. C. Toh; Chan Du; Karthikeyan Narayanan; Hong Fang Lu; Tze Chiun Lim; Andrew C.A. Wan; Jackie Y. Ying
The in vivo efficacy of engineered tissue constructs depends largely on their integration with the host vasculature. Prevascularisation has been noted to facilitate integration of the constructs via anastomosis of preformed microvascular networks. Here we report a technique to fabricate aligned, spatially defined prevascularised tissue constructs with endothelial vessels by assembling individually tailored cell-laden polyelectrolyte hydrogel fibres. Stable, aligned endothelial vessels form in vitro within these constructs in 24 h, and these vessels anastomose with the host circulation in a mouse subcutaneous model. We create vascularised adipose and hepatic tissues by co-patterning the respective cell types with the preformed endothelial vessels. Our study indicates that the formation of aligned endothelial vessels in a hydrogel is an efficient prevascularisation approach in the engineering of tissue constructs.
Biomaterials | 2010
Benjamin C.U. Tai; Chan Du; Shujun Gao; Andrew C.A. Wan; Jackie Y. Ying
Liver transplantation as a therapy for liver failure is often hampered by a shortage of donor tissue. The delivery of liver-differentiated human mesenchymal stem cells (hMSCs) is a potential therapy to aid in liver regeneration. In this study, an RGD-modified chitosan-alginate polyelectrolyte complex (PEC) fibrous non-woven scaffold was employed to deliver differentiated hMSCs in vivo. Bone marrow-derived hMSCs were differentiated in vitro by a combination of extracellular matrix (ECM) and conditioned medium and seeded onto the RGD-modified chitosan-alginate fibrous scaffolds. The cell/scaffold construct was then implanted into the livers of a rat model, where 70% of the liver had been removed. Post-implantation analysis of the cell/scaffold constructs showed positive periodic acid-Schiff (PAS) staining for glycogen, and expression of the hepatic markers, AFP, CK19, CK18, albumin, HNF-3beta and MRP-2 by immunofluorescence labeling. In addition, human albumin was detectable in the rat serum by spot blot. These findings demonstrated that the RGD-modified chitosan-alginate fibrous scaffold was useful for delivering transdifferentiated hMSCs into the liver and maintaining the differentiated phenotype of the cells.
Biomaterials | 2013
Majad Khan; Karthikeyan Narayanan; Hongfang Lu; Yang Choo; Chan Du; Nikken Wiradharma; Yi-Yan Yang; Andrew C.A. Wan
Protein delivery allows a clinical effect to be directly realized without genetic modification of the host cells. We have developed a cationic bolaamphiphile as a non-viral vector for protein delivery application. The relatively low toxicity and efficient protein delivery by the cationic bolaamphiphile prompted us to test the system for the generation of induced pluripotent stem cells (iPSCs) as an alternative to the conventional vector-based genetic approach. Studies on the kinetics and cytotoxicity of the protein delivery system led us to use an optimized cationic bolaamphiphile-protein complex ratio of 7:1 (wt/wt) and a 3 h period of incubation with human fibroblasts, to ensure complete and non-toxic protein delivery of the reprogramming proteins. The reprogrammed cells were shown to exhibit the characteristics of embryonic stem cells, including expression of pluripotent markers, teratoma formation in SCID mice, and ability to be differentiated into a specific lineage, as exemplified by neuronal differentiation.
Acta Biomaterialia | 2014
Li-Shan Wang; Fan Lee; Jaehong Lim; Chan Du; Andrew C.A. Wan; Su Seong Lee; Motoichi Kurisawa
In this study, one-step enzyme-mediated preparation of a multi-functional injectable hyaluronic-acid-based hydrogel system is reported. Hydrogel was formed through the in situ coupling of phenol moieties by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), and bioactive peptides were simultaneously conjugated into the hydrogel during the gel formation process. The preparation of this multi-functional hydrogel was made possible by synthesizing peptides containing phenols which could couple with the phenol moieties of hyaluronic-acid-tyramine (HA-Tyr) during the HRP-mediated crosslinking reaction. Preliminary studies demonstrated that two phenol moieties per molecule resulted in a consistently high degree of conjugation into the HA-Tyr hydrogel network, unlike the one modified with one phenol moiety per molecule. Therefore, an Arg-Gly-Asp (RGD) peptide bearing two phenol moieties (phenol2-poly(ethylene glycol)-RGD) was designed for conjugation to endow the HA-Tyr hydrogel with adhesion signals and enhance its bioactivities. Human umbilical vein endothelial cells (HUVECs) cultured on or within the RGD-modified hydrogels showed significantly different adhesion behavior, from non-adherence on the HA-Tyr hydrogel to strong adhesion on hydrogels modified with phenol2-poly(ethylene glycol)-RGD. This altered cell adhesion behavior led to improved cell proliferation, migration and formation of capillary-like network in the hydrogel in vitro. More importantly, when HUVECs and human fibroblasts (HFF1) were encapsulated together in the RGD-modified HA-Tyr hydrogel, functional vasculature was observed inside the cell-laden gel after 2weeks in the subcutaneous tissue. Taken together, the in situ conjugation of phenol2-poly(ethylene glycol)-RGD into HA-Tyr hydrogel system, coupled with the ease of incorporating cells, offers a simple and effective means to introduce biological signals for preparation of multi-functional injectable hydrogels for tissue engineering application.
Biomacromolecules | 2014
Karthikeyan Kandasamy; Karthikeyan Narayanan; Ming Ni; Chan Du; Andrew C.A. Wan; Daniele Zink
Clinical and industrial applications of human pluripotent stem cells (hPSC) require large amounts of cells that have been expanded under defined conditions. Labor-intensive techniques and ill-defined or expensive compounds and substrates are not applicable. Here we describe a chemically defined synthetic substrate consisting of polysulfone (PSF) membranes coated with polymerized 3,4-dihydroxy-l-phenylalanine (DOPA). DOPA/PSF is inexpensive and can be easily produced at various shapes and sizes. DOPA/PSF supports long-term self-renewal of undifferentiated human embryonic (hESC) and human induced pluripotent stem cells (hiPSC) under defined conditions. Pluripotency is maintained for at least 10 passages. Adhesion of hPSC to DOPA/PSF is mainly mediated by a specific integrin heterodimer. Proliferation and gene expression patterns on DOPA/PSF and control substrates are comparable. Labor-intensive cultivation methods and use of serum or coating with proteins are not required. Together, these features make DOPA/PSF attractive for applications where large-scale expansion of human pluripotent stem cells under defined conditions is essential.
Advanced Healthcare Materials | 2016
Chan Du; Karthikeyan Narayanan; Meng Fatt Leong; Mohammed Shahrudin Ibrahim; Ying Ping Chua; Vanessa Mei Hui Khoo; Andrew C.A. Wan
Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However, the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues, decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering, using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly, the present work is focused on generating the functional unit of the kidney, the glomerulus. In the repopulated organ, the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice, glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant, expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney.
Biofabrication | 2017
Hong Fang Lu; Meng Fatt Leong; Tze Chiun Lim; Ying Ping Chua; Jia Kai Lim; Chan Du; Andrew C.A. Wan
Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies. Cardiac tissues were fabricated via cellular self-assembly of human transgene-free induced pluripotent stem cells-derived cardiomyocytes in pre-fabricated polydimethylsiloxane molds. The formed tissue constructs expressed cardiomyocyte-specific proteins, exhibited robust production of extracellular matrix components such as laminin, collagen and fibronectin, aligned sarcomeric organization, and stable spontaneous contractions for up to 2 months. Functional characterization revealed that the cardiac cells cultured in 3D tissues exhibited higher contraction speed and rate, and displayed a significantly different drug response compared to cells cultured in age-matched 2D monolayer. A panel of clinically relevant compounds including antibiotic, antidiabetic and anticancer drugs were tested in this study. Compared to conventional viability assays, our functional contractility-based assays were more sensitive in predicting drug-induced cardiotoxic effects, demonstrating good concordance with clinical observations. Thus, our 3D cardiac tissue model shows great potential to be used for early safety evaluation in drug development and drug efficiency testing for personalized therapy.
Biotechnology Journal | 2017
Benjamin C.U. Tai; Chan Du; Shujun Gao; Andrew C.A. Wan
Cell-based therapies for cartilage repair are continually being developed to treat osteoarthritis. The cells are either introduced directly by intra-articular injection or via a cell-seeded matrix scaffold. Here, poly(vinylalcohol)-based membranes are developed to be used for mesenchymal stem cell implantation in cartilage repair procedures, having controllable physicochemical properties such as porosity, mechanical strength, and permeability, and a unique self-sealing property. The membranes possess a bilayer structure with a less porous layer providing mechanical strength and selective permeability, exhibit an elastic modulus of between 0.3 and 0.9 MPa, and are permeable to molecules <40 kDa, which is in the range of cartilage permeability. Three different peptide ligands with the sequences Ac-GCGYGRGDSPG, Ac-GCG(OPG)4REGOFG(OPG)4, and Ac-GCG(OPG)7, respectively, are conjugated to the membranes and subject to in vitro cell adhesion and differentiation assays. Col I/Col II gene expression ratios indicated that the collagen-mimetic peptide, Ac-GCG(OPG)7, best supported mesenchymal stem cell differentiation into the chondrogenic lineage. Although low retention of the membrane is observed in vivo in a rabbit knee model, results suggest that the membrane was able to facilitate mesenchymal stem cell implantation and differentiation to chondrocytes. These PVA-based membranes provide a feasible, synthetic, off-the-shelf material for the delivery of stem cells, and can be modified for other surgical applications.
Biomaterials | 2014
Li-Shan Wang; Chan Du; Wei Seong Toh; Andrew C.A. Wan; Shu Jun Gao; Motoichi Kurisawa
Biomaterials | 2014
Chan Du; Karthikeyan Narayanan; Meng Fatt Leong; Andrew C.A. Wan