Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chan-Ki Min is active.

Publication


Featured researches published by Chan-Ki Min.


Scientific Reports | 2016

Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity

Chan-Ki Min; Shinhye Cheon; Na-Young Ha; Kyung Mok Sohn; Yuri Kim; Abdimadiyeva Aigerim; Hyun Mu Shin; Ji-Yeob Choi; Kyung-Soo Inn; Jin-Hwan Kim; Jae Young Moon; Myung-Sik Choi; Nam-Hyuk Cho; Yeon-Sook Kim

Despite the ongoing spread of MERS, there is limited knowledge of the factors affecting its severity and outcomes. We analyzed clinical data and specimens from fourteen MERS patients treated in a hospital who collectively represent a wide spectrum of disease severity, ranging from mild febrile illness to fatal pneumonia, and classified the patients into four groups based on severity and mortality. Comparative and kinetic analyses revealed that high viral loads, weak antibody responses, and lymphopenia accompanying thrombocytopenia were associated with disease mortality, whereas persistent and gradual increases in lymphocyte responses might be required for effective immunity against MERS-CoV infection. Leukocytosis, primarily due to increased neutrophils and monocytes, was generally observed in more severe and fatal cases. The blood levels of cytokines such as IL-10, IL-15, TGF-β, and EGF were either positively or negatively correlated with disease mortality. Robust induction of various chemokines with differential kinetics was more prominent in patients that recovered from pneumonia than in patients with mild febrile illness or deceased patients. The correlation of the virological and immunological responses with disease severity and mortality, as well as their responses to current antiviral therapy, may have prognostic significance during the early phase of MERS.


Comparative and Functional Genomics | 2008

Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order.

Chan-Ki Min; Jae-Seong Yang; Sanguk Kim; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho

Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium that belongs to the order of Rickettsiales. Recently, we have reported that O. tsutsugamushi has a unique genomic structure, consisting of highly repetitive sequences, and suggested that it may provide valuable insight into the evolution of intracellular bacteria. Here, we have used genomic information to construct the major metabolic pathways of O. tsutsugamushi and performed a comparative analysis of the metabolic genes and pathways of O. tsutsugamushi with other members of the Rickettsiales order. While O. tsutsugamushi has the largest genome among the members of this order, mainly due to the presence of repeated sequences, its metabolic pathways have been highly streamlined. Overall, the metabolic pathways of O. tsutsugamushi were similar to Rickettsia but there were notable differences in several pathways including carbohydrate metabolism, the TCA cycle, and the synthesis of cell wall components as well as in the transport systems. Our results will provide a useful guide to the postgenomic analysis of O. tsutsugamushi and lead to a better understanding of the virulence and physiology of this intracellular pathogen.


PLOS Pathogens | 2008

Role of Amphipathic Helix of a Herpesviral Protein in Membrane Deformation and T Cell Receptor Downregulation

Chan-Ki Min; Sun-Young Bang; Bon-A Cho; Yun Hui Choi; Jae-Seong Yang; Sun Hwa Lee; Seung-Yong Seong; Ki Woo Kim; Sanguk Kim; Jae U. Jung; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho

Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tips transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tips lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.


PLOS ONE | 2014

Multiple Orientia tsutsugamushi Ankyrin Repeat Proteins Interact with SCF1 Ubiquitin Ligase Complex and Eukaryotic Elongation Factor 1 α

Chan-Ki Min; Ye-Jin Kwon; Na-Young Ha; Bon-A Cho; Jo-Min Kim; Eun-Kyung Kwon; Yeon Sook Kim; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho

Background Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Previously, a large number of genes that encode proteins containing eukaryotic protein-protein interaction motifs such as ankyrin-repeat (Ank) domains were identified in the O. tsutsugamushi genome. However, little is known about the Ank protein function in O. tsutsugamushi. Methodology/Principal Findings To characterize the function of Ank proteins, we investigated a group of Ank proteins containing an F-box–like domain in the C-terminus in addition to the Ank domains. All nine selected ank genes were expressed at the transcriptional level in host cells infected with O. tsutsugamushi, and specific antibody responses against three Ank proteins were detected in the serum from human patients, indicating an active expression of the bacterial Ank proteins post infection. When ectopically expressed in HeLa cells, the Ank proteins of O. tsutsugamushi were consistently found in the nucleus and/or cytoplasm. In GST pull-down assays, multiple Ank proteins specifically interacted with Cullin1 and Skp1, core components of the SCF1 ubiquitin ligase complex, as well as the eukaryotic elongation factor 1 α (EF1α). Moreover, one Ank protein co-localized with the identified host targets and induced downregulation of EF1α potentially via enhanced ubiquitination. The downregulation of EF1α was observed consistently in diverse host cell types infected with O. tsutsugamushi. Conclusion/Significance These results suggest that conserved targeting and subsequent degradation of EF1α by multiple O. tsutsugamushi Ank proteins could be a novel bacterial strategy for replication and/or pathogenesis during mammalian host infection.


PLOS Neglected Tropical Diseases | 2015

Immunization with an Autotransporter Protein of Orientia tsutsugamushi Provides Protective Immunity against Scrub Typhus

Na-Young Ha; Prashant Sharma; Gwanghun Kim; Yuri Kim; Chan-Ki Min; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho

Background Scrub typhus is an acute febrile disease caused by Orientia tsutsugamushi infection. Recently, the rapid increase of scrub typhus incidence in several countries within the endemic region has become a serious public health issue. Despite the wide range of preventative approaches that have been attempted in the past 70 years, all have failed to develop an effective prophylactic vaccine. Currently, the selection of the proper antigens is one of the critical barriers to generating cross-protective immunity against antigenically-variable strains of O. tsutsugamushi. Methodology/Principal Findings We examined the potential role of ScaA protein, an autotransporter protein of O. tsutsugamushi, in bacterial pathogenesis and evaluated the protective attributes of ScaA immunization in lethal O. tsutsugamushi infection in mice. Our findings demonstrate that ScaA functions as a bacterial adhesion factor, and anti-ScaA antibody significantly neutralizes bacterial infection of host cells. In addition, immunization with ScaA not only provides protective immunity against lethal challenges with the homologous strain, but also confers significant protection against heterologous strains when combined with TSA56, a major outer membrane protein of O. tsutsugamushi. Conclusions/Significance Immunization of ScaA proteins provides protective immunity in mice when challenged with the homologous strain and significantly enhanced protective immunity against infection with heterologous strains. To our knowledge, this is the most promising result of scrub typhus vaccination trials against infection of heterologous strains in mouse models thus far.


PLOS Neglected Tropical Diseases | 2017

Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas

Gwanghun Kim; Na-Young Ha; Chan-Ki Min; Hong-Il Kim; Nguyen Thi Yen; Keun-Hwa Lee; Inbo Oh; Jae-Seung Kang; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho

Background Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine. Methodology/Principal findings To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes. Conclusions/Significance Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus.


Emerging microbes & infections | 2017

Longevity of antibody and T-cell responses against outer membrane antigens of Orientia tsutsugamushi in scrub typhus patients

Na-Young Ha; Yuri Kim; Chan-Ki Min; Hong-Il Kim; Nguyen Thi Yen; Myung-Sik Choi; Jae-Seung Kang; Yeon-Sook Kim; Nam-Hyuk Cho

Scrub typhus, caused by Orientia tsutsugamushi infection, has been a serious public health issue in the Asia-Pacific region, with rising incidence and sporadic outbreaks. However, human protective immunity against specific antigens has been poorly characterized for this bacterium. In addition, immunity produced in early vaccine trials or even after natural infections, did not last long and had poor cross-reactivity among various genotypes. Here, we systematically investigated the kinetics and magnitude of specific adaptive immunity against two membrane antigens, 56 kDa type-specific antigen (TSA56) and surface cell antigen A (ScaA), that are involved in bacterial adhesion and invasion of the host in 64 recovered scrub typhus patients. Antibody responses to the bacterial antigens in patients were generally short-lived and waned to baseline levels 2 years after recovery. The anti-TSA56 IgG responses were predominantly composed of the IgG1 and IgG3 subclasses and persisted for up to 1 year after recovery, whereas IgG specific to ScaA primarily consisted of more transient IgG1, with limited responses by other subclasses. Cellular immunity, including CD4 and CD8 T-cells specific to membrane antigens, also rapidly declined from 1 year after infection, as measured by enzyme-linked immunospot (ELISPOT) assays and flow cytometry. The short longevity of antigen-specific adaptive immunity might be attributable to limited memory responses, as observed in earlier vaccine studies using whole bacterial antigens. Finally, we identified HLA-A*0201-restricted and highly conserved CD8 T-cell epitopes in the TSA56 antigen, which may be valuable tools for assessing cellular immunity against O. tsutsugamushi and developing an effective scrub typhus vaccine. Emerging Microbes & Infections (2017) 6, e116 doi:10.1038/emi.2017.106; published online 20 December 2017


Journal of Microbiology | 2016

Inhibition of eukaryotic translation by tetratricopeptide-repeat proteins of Orientia tsutsugamushi

Sun-Young Bang; Chan-Ki Min; Na-Young Ha; Myung-Sik Choi; Ik-Sang Kim; Yeon-Sook Kim; Nam-Hyuk Cho

Orientia tsutsugamushi, an obligate intracellular bacterium, is the causative agent of scrub typhus. The genome of Orientia tsutsugamushi has revealed multiple ORFs encoding tetratricopeptide-repeat (TPR) proteins. The TPR protein family has been shown to be involved in a diverse spectrum of cellular functions such as cell cycle control, transcription, protein transport, and protein folding, especially in eukaryotic cells. However, little is known about the function of the TPR proteins in O. tsutsugamushi. To investigate the potential role of TPR proteins in host-pathogen interaction, two oriential TPR proteins were expressed in E. coli and applied for GSTpull down assay. DDX3, a DEAD-box containing RNA helicase, was identified as a specific eukaryotic target of the TPR proteins. Since the RNA helicase is involved in multiple RNAmodifying processes such as initiation of translation reaction, we performed in vitro translation assay in the presence of GST-TPR fusion proteins by using rabbit reticulocyte lysate system. The TPR proteins inhibited in vitro translation of a reporter luciferase in a dose dependent manner whereas the GST control proteins did not. These results suggested TPR proteins of O. tsutsugamushi might be involved in the modulation of eukarytotic translation through the interaction with DDX3 RNA helicase after secretion into host cytoplasm.


Frontiers in Immunology | 2018

A Type I Interferon and IL-10 Induced by Orientia tsutsugamushi Infection Suppresses Antigen-Specific T Cells and Their Memory Responses

Chan-Ki Min; Hong-II Kim; Na-Young Ha; Yuri Kim; Eun-Kyung Kwon; Nguyen Thi Yen; Je-In Youn; Yoon Kyung Jeon; Kyung-Soo Inn; Myung-Sik Choi; Nam-Hyuk Cho

Despite the various roles of type I interferon (type I IFN) responses during bacterial infection, its specific effects in vivo have been poorly characterized in scrub typhus caused by Orientia tsutsugamushi infection. Here, we show that type I IFNs are primarily induced via intracellular nucleic acids sensors, including RIG-I/MAVS and cGAS/STING pathways, during O. tsutsugamushi invasion. However, type I IFN signaling did not significantly affect pathogenesis, mortality, or bacterial burden during primary infection in vivo, when assessed in a mice model lacking a receptor for type I IFNs (IFNAR KO). Rather, it significantly impaired the induction of antigen-specific T cells and reduced memory T cell responses. IFNAR KO mice that recovered from primary infection showed stronger antigen-specific T cell responses, especially Th1, and more efficiently controlled bacteremia during secondary infection than wild type mice. Enhanced IL-10 expression by macrophages in the presence of type I IFN signaling might play a significant role in the suppression of antigen-specific T cell responses as neutralization or knock-out (KO) of IL-10 increased T cell responses in vitro. Therefore, induction of the type I IFN/IL-10 axis by O. tsutsugamushi infection might play a significant role in the suppression of T cell responses and contribute to the short longevity of cell-mediated immunity, often observed in scrub typhus patients.


PLOS ONE | 2017

Immunological dynamics associated with rapid virological response during the early phase of type I interferon therapy in patients with chronic hepatitis C

Jae Won Lee; Won Seog Kim; Eun-Kyung Kwon; Yuri Kim; Hyun Mu Shin; Dong-Hyun Kim; Chan-Ki Min; Ji-Yeob Choi; Won Woo Lee; Myung-Sik Choi; Byeong Gwan Kim; Nam-Hyuk Cho

Type I interferons (IFNs) play an important role in antiviral immunity as well as immunopathogenesis of diverse chronic viral infections. However, the precise mechanisms regulating the multifaceted effects of type I IFNs on the immune system and pathological inflammation still remain unclear. In order to assess the immunological dynamics associated with rapid viral clearance in chronic hepatitis C patients during the acute phase of type I IFN therapy, we analyzed multiple parameters of virological and immunological responses in a cohort of 59 Korean hepatitis C patients who received pegylated IFN-α and ribavirin (IFN/RBV). Most of the Korean patients had favorable alleles in the IFN-λ loci for responsiveness to IFN/RBV (i.e., C/C in rs12979860, T/T in rs8099917, and TT/TT in rs368234815). Rapid virological response (RVR) was determined mainly by the hepatitis C virus genotype. Among the cytokines analyzed, higher plasma levels of IL-17A and FGF were observed in non-RVR patients infected with viral genotype 1 and IP-10 was consistently elevated in RVR group infected with genotype 2 during the early phase of antiviral therapy. In addition, these three cytokines were correlated each other, suggesting a functional linkage of the cytokines in antiviral responses during IFN/RBV therapy. A low baseline frequencies of regulatory T cells and γδ T cells, but high level of group 2 innate lymphoid cells, in peripheral bloods were also significantly associated with the RVR group, implicating a potential role of the cellular immunity during the early phase of IFN/RBV therapy. Therefore, the immunological programs established by chronic hepatitis C and rapid disruption of the delicate balance by exogenous type I IFN might be associated with the subsequent virological outcomes in chronic hepatitis C patients.

Collaboration


Dive into the Chan-Ki Min's collaboration.

Top Co-Authors

Avatar

Nam-Hyuk Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Myung-Sik Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Na-Young Ha

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ik-Sang Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yuri Kim

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

Eun-Kyung Kwon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Nguyen Thi Yen

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yeon-Sook Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Bon-A Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Gwanghun Kim

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge