Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chander Raman is active.

Publication


Featured researches published by Chander Raman.


Nature Medicine | 2010

T helper type 1 and 17 cells determine efficacy of interferon-[beta] in multiple sclerosis and experimental encephalomyelitis

Robert C. Axtell; Brigit A. de Jong; Katia Boniface; Laura F. van der Voort; Roopa Bhat; Patrizia De Sarno; Rodrigo Naves; May Han; Franklin Zhong; Jim G Castellanos; Robert Mair; Athena Christakos; Ilan Kolkowitz; Liat Katz; Joep Killestein; C.H. Polman; Rene de Waal Malefyt; Lawrence Steinman; Chander Raman

Interferon-β (IFN-β) is the major treatment for multiple sclerosis. However, this treatment is not always effective. Here we have found congruence in outcome between responses to IFN-β in experimental autoimmune encephalomyelitis (EAE) and relapsing-remitting multiple sclerosis (RRMS). IFN-β was effective in reducing EAE symptoms induced by T helper type 1 (TH1) cells but exacerbated disease induced by TH17 cells. Effective treatment in TH1-induced EAE correlated with increased interleukin-10 (IL-10) production by splenocytes. In TH17-induced disease, the amount of IL-10 was unaltered by treatment, although, unexpectedly, IFN-β treatment still reduced IL-17 production without benefit. Both inhibition of IL-17 and induction of IL-10 depended on IFN-γ. In the absence of IFN-γ signaling, IFN-β therapy was ineffective in EAE. In RRMS patients, IFN-β nonresponders had higher IL-17F concentrations in serum compared to responders. Nonresponders had worse disease with more steroid usage and more relapses than did responders. Hence, IFN-β is proinflammatory in TH17-induced EAE. Moreover, a high IL-17F concentration in the serum of people with RRMS is associated with nonresponsiveness to therapy with IFN-β.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation

Hongwei Qin; Wen-I Yeh; Patrizia De Sarno; Andrew T. Holdbrooks; Yudong Liu; Michelle T. Muldowney; Stephanie L. Reynolds; Lora L. Yanagisawa; Thomas H. Fox; Keun Woo Park; Laurie E. Harrington; Chander Raman; Etty N. Benveniste

Suppressor of cytokine signaling (SOCS) proteins are feedback inhibitors of the JAK/STAT pathway. SOCS3 has a crucial role in inhibiting STAT3 activation, cytokine signaling, and inflammatory gene expression in macrophages/microglia. To determine the role of SOCS3 in myeloid cells in neuroinflammation, mice with conditional SOCS3 deletion in myeloid cells (LysMCre-SOCS3fl/fl) were tested for experimental autoimmune encephalomyelitis (EAE). The myeloid-specific SOCS3-deficient mice are vulnerable to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with a severe, nonresolving atypical form of disease. In vivo, enhanced infiltration of inflammatory cells and demyelination is prominent in the cerebellum of myeloid-specific SOCS3-deficient mice, as is enhanced STAT3 signaling and expression of inflammatory cytokines/chemokines and an immune response dominated by Th1 and Th17 cells. In vitro, SOCS3-deficient macrophages exhibit heightened STAT3 activation and are polarized toward the classical M1 phenotype. SOCS3-deficient M1 macrophages provide the microenvironment to polarize Th1 and Th17 cells and induce neuronal death. Furthermore, adoptive transfer of M2 macrophages into myeloid SOCS3-deficient mice leads to delayed onset and reduced severity of atypical EAE by decreasing STAT3 activation, Th1/Th17 cells, and proinflammatory mediators in the cerebellum. These findings indicate that myeloid cell SOCS3 provides protection from EAE through deactivation of neuroinflammatory responses.


The Journal of Neuroscience | 2013

MHCII Is Required for α-Synuclein-Induced Activation of Microglia, CD4 T Cell Proliferation, and Dopaminergic Neurodegeneration

Ashley S. Harms; Shuwen Cao; Amber L. Rowse; Aaron D. Thome; Xinru Li; Leandra R. Mangieri; Randy Q. Cron; John J. Shacka; Chander Raman; David G. Standaert

Accumulation of α-synuclein (α-syn) in the brain is a core feature of Parkinson disease (PD) and leads to microglial activation, production of inflammatory cytokines and chemokines, T-cell infiltration, and neurodegeneration. Here, we have used both an in vivo mouse model induced by viral overexpression of α-syn as well as in vitro systems to study the role of the MHCII complex in α-syn-induced neuroinflammation and neurodegeneration. We find that in vivo, expression of full-length human α-syn causes striking induction of MHCII expression by microglia, while knock-out of MHCII prevents α-syn-induced microglial activation, antigen presentation, IgG deposition, and the degeneration of dopaminergic neurons. In vitro, treatment of microglia with aggregated α-syn leads to activation of antigen processing and presentation of antigen sufficient to drive CD4 T-cell proliferation and to trigger cytokine release. These results indicate a central role for microglial MHCII in the activation of both the innate and adaptive immune responses to α-syn in PD and suggest that the MHCII signaling complex may be a target of neuroprotective therapies for the disease.


Journal of Immunology | 2008

Lithium Prevents and Ameliorates Experimental Autoimmune Encephalomyelitis

Patrizia De Sarno; Robert C. Axtell; Chander Raman; Kevin A. Roth; Dario R. Alessi; Richard S. Jope

Experimental autoimmune encephalomyelitis (EAE) models, in animals, many characteristics of multiple sclerosis, for which there is no adequate therapy. We investigated whether lithium, an inhibitor of glycogen synthase kinase-3 (GSK3), can ameliorate EAE in mice. Pretreatment with lithium markedly suppressed the clinical symptoms of EAE induced in mice by myelin oligodendrocyte glycoprotein peptide (MOG35–55) immunization and greatly reduced demyelination, microglia activation, and leukocyte infiltration in the spinal cord. Lithium administered postimmunization, after disease onset, reduced disease severity and facilitated partial recovery. Conversely, in knock-in mice expressing constitutively active GSK3, EAE developed more rapidly and was more severe. In vivo lithium therapy suppressed MOG35–55-reactive effector T cell differentiation, greatly reducing in vitro MOG35–55- stimulated proliferation of mononuclear cells from draining lymph nodes and spleens, and MOG35–55-induced IFN-γ, IL-6, and IL-17 production by splenocytes isolated from MOG35–55-immunized mice. In relapsing/remitting EAE induced with proteolipid protein peptide139–151, lithium administered after the first clinical episode maintained long-term (90 days after immunization) protection, and after lithium withdrawal the disease rapidly relapsed. These results demonstrate that lithium suppresses EAE and identify GSK3 as a new target for inhibition that may be useful for therapeutic intervention of multiple sclerosis and other autoimmune and inflammatory diseases afflicting the CNS.


Journal of Biological Chemistry | 1998

Regulation of Casein Kinase 2 by Direct Interaction with Cell Surface Receptor CD5

Chander Raman; Anling Kuo; Jessy Deshane; David W. Litchfield; Robert P. Kimberly

The transmembrane protein CD5, expressed on all T cells and the B1 subset of B cells, modulates antigen receptor-mediated activation. We used the yeast two-hybrid system to identify proteins that interact with its cytoplasmic domain and play a role in CD5 proximal signaling events. We found that the β subunit of the serine/threonine kinase casein kinase 2 (CK2) interacts specifically with the cytoplasmic domain of CD5. Co-immunoprecipitation experiments showed activation-independent association of CK2 with CD5 in human and murine B and T cell lines and murine splenocytes. The interaction of CK2 holoenzyme with CD5 is mediated by the amino terminus of the regulatory subunit β. CK2 binds and phosphorylates CD5 at the CK2 motifs flanked by Ser459 and Ser461. Cross-linking of CD5 leads to the activation of CD5-associated CK2 in a murine B-lymphoma cell line and a human T-leukemia cell line and is independent of net recruitment of CK2 to CD5. In contrast, CK2 is not activated following cross-linking of the B cell receptor complex or the T cell receptor complex. This direct regulation of CK2 by a cell surface receptor provides a novel pathway for control of cell activation that could play a significant role in regulation of CD5-dependent antigen receptor activation in T and B cells.


Trends in Immunology | 2011

Interferon-β exacerbates Th17-mediated inflammatory disease

Robert C. Axtell; Chander Raman; Lawrence Steinman

Interferon (IFN)-β is the treatment most often prescribed for relapsing-remitting multiple sclerosis (RRMS). 30-50% of MS patients, however, do not respond to IFN-β. In some cases, IFN-β exacerbates MS, and it consistently worsens neuromyelitis optica (NMO). To eliminate unnecessary treatment for patients who are non-responsive to IFN-β, and to avoid possible harm, researchers are identifying biomarkers that predict treatment outcome before treatment is initiated. These biomarkers reveal insights into the mechanisms of disease. Recent discoveries on human samples from patients with RRMS, NMO, psoriasis, rheumatoid arthritis, systemic lupus erythematosus and ulcerative colitis, indicate that IFN-β is ineffective and might worsen clinical status in diverse diseases when a Th17 immune response is prominent.


Journal of Immunology | 2005

Critical Requirement of CD11b (Mac-1) on T Cells and Accessory Cells for Development of Experimental Autoimmune Encephalomyelitis

Daniel C. Bullard; Xianzhen Hu; Trenton R. Schoeb; Robert C. Axtell; Chander Raman; Scott R. Barnum

Mac-1 (CD18/CD11b) is a member of the β2-integrin family of adhesion molecules and is implicated in the development of many inflammatory diseases. The role of Mac-1 in the development of CNS demyelinating diseases, including multiple sclerosis, is not understood, and Ab inhibition studies in experimental allergic encephalomyelitis (EAE), the animal model for multiple sclerosis, have produced conflicting findings. To clarify these results and to determine Mac-1-mediated mechanisms in EAE, we performed EAE using Mac-1-deficient mice. Mac-1 homozygous-deficient, but not Mac-1 heterozygous-deficient mice, had significantly delayed onset and attenuated EAE. Leukocyte infiltration was similar in both groups of mice in early disease but significantly reduced in spinal cords of receptor-deficient mice in late disease. Adoptive transfer of Ag-restimulated T cells from wild-type to Mac-1-deficient mice produced significantly attenuated EAE, whereas transfer of Mac-1-deficient Ag-restimulated T cells to control mice failed to induce EAE. T cells from myelin oligodendrocyte glycoprotein (MOG)35–55 peptide-primed Mac-1-deficient mice displayed an altered cytokine phenotype with elevated levels of TGF-β and IL-10, but reduced levels of IL-2, IFN-γ, TNF-α, IL-12, and IL-4 compared with control mice. Mac-1-deficient T cells from primed mice proliferated comparably to that of control T cells on MOG35–55 restimulation in vitro. However, the draining lymph nodes of MAC-1-deficient mice on day 10 after MOG35–55 immunization contained lower frequency of blast T cells than in control mice, suggesting poor priming. Our results indicate that Mac-1 expression is critical on both phagocytic cells and T cells for the development of demyelinating disease.


Journal of Immunology | 2006

CD5-CK2 Binding/Activation-Deficient Mice Are Resistant to Experimental Autoimmune Encephalomyelitis: Protection Is Associated with Diminished Populations of IL-17-Expressing T Cells in the Central Nervous System

Robert C. Axtell; Liang Xu; Scott R. Barnum; Chander Raman

Regulating the differentiation and persistence of encephalitogenic T cells is critical for the development of experimental autoimmune encephalomyelitis (EAE). We reported recently that CD5 has an engagement-dependent prosurvival activity in T cells that played a direct role in the induction and progression EAE. We predicted that CD5 regulates T cell apoptosis/survival through the activation of CK2, a prosurvival serine/threonine kinase that associates with the receptor. To test this hypothesis, we generated mice expressing CD5 with the inability to bind and activate CK2 and assessed their susceptibility to EAE. We found mice deficient in CD5-CK2 signaling pathway were mostly resistant to the development of EAE. Resistance to EAE was associated with a dramatic decrease in a population of effector infiltrating Th cells that coexpress IFN-γ and IL-17 and, to a lesser extent, cells that express IFN-γ or IL-17 in draining lymph nodes and spinal cords. We further show that T cells deficient in CD5-CK2 signaling hyperproliferate following primary stimulation; however, following restimulation, they rapidly develop nonresponsiveness and exhibit elevated activation-induced cell death. Our results provide a direct role for CD5-CK2 pathway in T cell activation and persistence of effector T cells in neuroinflammatory disease. This study predicts that targeting of IFN-γ+/IL-17+ infiltrating Th cells will be useful for the treatment of multiple sclerosis and other systemic autoimmune diseases.


Journal of Immunology | 2014

Therapeutic Efficacy of Suppressing the JAK/STAT Pathway in Multiple Models of Experimental Autoimmune Encephalomyelitis

Yudong Liu; Andrew T. Holdbrooks; Patrizia De Sarno; Amber L. Rowse; Lora L. Yanagisawa; Braden C. McFarland; Laurie E. Harrington; Chander Raman; Steffanie Sabbaj; Etty N. Benveniste; Hongwei Qin

Pathogenic Th cells and myeloid cells are involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is used by numerous cytokines for signaling and is critical for development, regulation, and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ, and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have used AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in myelin oligodendrocyte glycoprotein-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of proinflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T cells and attenuates Ag presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple preclinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases.


American Journal of Pathology | 2004

Loss of LFA-1, but not Mac-1, protects MRL/MpJ-Faslpr mice from autoimmune disease

Christopher G. Kevil; M. John Hicks; Xiaodong He; Junxuan Zhang; Christie M. Ballantyne; Chander Raman; Trenton R. Schoeb; Daniel C. Bullard

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune complex-mediated tissue injury. Many different adhesion molecules are thought to participate in the development of SLE; however, few studies have directly examined the contributions of these proteins. Here we demonstrate that LFA-1 plays an essential role in the development of lupus in MRL/MpJ-Fas(lpr) mice. Mice deficient in LFA-1, but not Mac-1, showed significantly increased survival, decreased anti-DNA autoantibody formation, and reduced glomerulonephritis. The phenotype of the LFA-1-deficient mice was similar to that observed in beta(2) integrin-deficient (CD18-null) MRL/MpJ-Fas(lpr) mice, suggesting a lack of redundancy among the beta(2) integrin family members and other adhesion molecules. These studies identify LFA-1 as a key contributor in the pathogenesis of autoimmune disease in this model, and further suggest that therapeutic strategies targeting this adhesion molecule may be beneficial for the treatment of SLE.

Collaboration


Dive into the Chander Raman's collaboration.

Top Co-Authors

Avatar

Patrizia De Sarno

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gloria Soldevila

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Christine M. Sestero

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Naves

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kevin S. Cashman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Brandi J. Baker

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo A. García-Zepeda

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Amber L. Rowse

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge