Chandi C. Mandal
Central University of Rajasthan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chandi C. Mandal.
Frontiers in Endocrinology | 2015
Chandi C. Mandal
Many epidemiological studies show a positive connection between cardiovascular diseases and risk of osteoporosis, suggesting a role of hyperlipidemia and/or hypercholesterolemia in regulating osteoporosis. The majority of the studies indicated a correlation between high cholesterol and high LDL-cholesterol level with low bone mineral density, a strong predictor of osteoporosis. Similarly, bone metastasis is a serious complication of cancer for patients. Several epidemiological and basic studies have established that high cholesterol is associated with increased cancer risk. Moreover, osteoporotic bone environment predisposes the cancer cells for metastatic growth in the bone microenvironment. This review focuses on how cholesterol and cholesterol-lowering drugs (statins) regulate the functions of bone residential osteoblast and osteoclast cells to augment or to prevent bone deterioration. Moreover, this study provides an insight into molecular mechanisms of cholesterol-mediated bone deterioration. It also proposes a potential mechanism by which cellular cholesterol boosts cancer-induced bone metastasis.
Planta | 2015
Srimonta Gayen; Milan Kumar Samanta; Munshi Azad Hossain; Chandi C. Mandal; Soumitra K. Sen
AbstractMain conclusionEctopic expression of a deletion mutant (ndv200) ofBacillus thuringiensisvip3BRgene in tobacco plant provided almost complete protection against major crop pests cotton boll worm (Helicoverpa armigera), black cut worm (Agrotis ipsilon) and cotton leaf worm (Spodoptera littoralis). Whereasvip3BRtransgenic tobacco plant failed to protect themselves from these insects and showed resistance towards cotton leaf worm only. An analogous form of the Bacillus thuringiensisvip3Aa insecticidal toxin gene, named vip3BR, was identified and characterized, and exhibited similar attributes to the well-known Vip3Aa toxin. Vip3BR possessed broad-spectrum lepidopteran-specific insecticidal properties effective against most major crop pests of the Indian subcontinent. A Vip3BR toxin protein N-terminal deletion mutant, Ndv200, showed increased insecticidal potency relative to the native toxin, which conferred efficacy against four major crop pests, including cotton boll worm (Helicoverpa armigera), black cut worm (Agrotis ipsilon), cotton leaf worm (Spodoptera littoralis), and rice yellow stem borer (Scirpophaga incertulas). Ligand blot analysis indicated the Ndv200 toxin recognized the same larval midgut receptors as the native Vip3BR toxin, but differed from receptors recognized by Cry1A toxins. In the present study, we tested the prospect of the vip3BR and ndv200 toxin gene as candidate in development of insect-resistant genetically engineered crop plants by generating transgenic tobacco plant. The study revealed that the ndv200 mutant of vip3BR insecticidal toxin gene is a strong and prospective candidate for the next generation of genetically modified crop plants resistant to lepidopteran insects.
PLOS ONE | 2015
Jatin Mehta; Shailendra Asthana; Chandi C. Mandal; Sunita Saxena
Background Androgen Receptor (AR) is an essential transcription factor for the development of secondary sex characteristics, spermatogenesis and carcinogenesis. Recently AR has been implicated in the development and progression of breast and prostate cancers. Although some of the functions of the AR are known but the mechanistic details of these divergent processes are still not clear. Therefore understanding the regulatory mechanisms of the functioning of the AR in ER-/AR+ breast cancer will provide many novel targets for the purpose of therapeutic intervention. Methods/Results Using bioinformatics tools, we have identified 75 AR targets having prominent roles in cell cycle, apoptosis and metabolism. Herein, we validated 10 genes as AR targets by studying the regulation of these genes in MDA-MB-453 cell line on stimulation by androgens like 5α-dihydrotestosterone (DHT), using RT-qPCR and ChIP assay. It was observed that all the identified genes involved in cell cycle except MAD1L1 were found to be up regulated whereas expression of apoptosis related genes was decreased in response to DHT treatment. We performed an exhaustive, rigid-body docking between individual ARE and DNA binding domain (DBD) of the AR protein and it was found that novel residues K567, K588, K591 and R592 are involved in the process of DNA binding. To verify these specific DNA-protein interactions electrostatic energy term calculations for each residue was determined using the linearized Poisson–Boltzmann equation. Our experimental data showed that treatment of breast cancer cells with DHT promotes cell proliferation and decreases apoptosis. It was observed that bicalutamide treatment was able to reverse the effect of DHT. Conclusion Taken together, our results provide new insights into the mechanism by which AR promotes breast cancer progression. Moreover our work proposes to use bicalutamide along with taxanes as novel therapy for the treatment of TNBCs, which are positive for downstream AR signalling.
Journal of Mammary Gland Biology and Neoplasia | 2016
Tanu Sharma; James A. Radosevich; Geeta Pachori; Chandi C. Mandal
Breast microcalcification is a potential diagnostic indicator for non-palpable breast cancers. Microcalcification type I (calcium oxalate) is restricted to benign tissue, whereas type II (calcium hydroxyapatite) occurs both in benign as well as in malignant lesions. Microcalcification is a pathological complication of the mammary gland. Over the past few decades, much attention has been paid to exploit this property, which forms the basis for advances in diagnostic procedures and imaging techniques. The mechanism of its formation is still poorly understood. Hence, in this paper, we have attempted to address the molecular mechanism of microcalcification in breast cancer. The central theme of this communication is “how a subpopulation of heterogeneous breast tumor cells attains an osteoblast-like phenotype, and what activities drive the process of pathophysiological microcalcification, especially at the invasive or infiltrating front of breast tumors”. The role of bone morphogenetic proteins (BMPs) and tumor associated macrophages (TAMs) along with epithelial to mesenchymal transition (EMT) in manipulating this pathological process has been highlighted. Therefore, this review offers a novel insight into the mechanism underlying the development of microcalcification in breast carcinomas.
Frontiers in Pharmacology | 2017
Kaushik Chowdhury; Ankit Sharma; Suresh Kumar; Gyanesh K. Gunjan; Alo Nag; Chandi C. Mandal
Modern treatment strategies provide better overall survival in cancer patients, primarily by controlling tumor growth. However, off-target and systemic toxicity, tumor recurrence, and resistance to therapy are still inadvertent hurdles in current treatment regimens. Similarly, metastasis is another deadly threat to patients suffering from cancer. This has created an urgent demand to come up with new drugs having anti-metastatic potential and minimum side effects. Thus, this study was aimed at exploring the anti-proliferative and anti-metastatic potential of colocynth medicinal plant. Results from MTT assay, morphological visualization of cells and scratch assay indicated a role of ethanol and acetone extracts of fruit pulp of the colocynth plant in inhibiting cell viability, enhancing cell cytotoxicity and preventing cell migration in various cancer cell types, including breast cancer cell lines MCF-7 and MDA-MB-231, and cervical cancer cell line SiHa, subsequently having a low cytotoxic effect on mononuclear PBMC and macrophage J774A cells. Our study in metastatic MDA-MB-231 cells showed that both ethanol and acetone pulp extracts decreased transcript levels of the anti-apoptotic genes BCL2 and BCLXL, and a reverse effect was observed for the pro-apoptotic genes BAX and caspase 3. Additionally, enhanced caspase 3 activity and downregulated BCL2 protein were seen, indicating a role of these extracts in inducing apoptotic activity. Moreover, MDA-MB-231 cells treated with both these extracts demonstrated up-regulation of the epithelial gene keratin 19 and down-regulation of the mesenchymal genes, vimentin, N-cadherin, Zeb1 and Zeb2 compared to control, suggesting a suppressive impact of these extracts in epithelial to mesenchymal transition (EMT). In addition, these extracts inhibited colony and sphere formation with simultaneous reduction in the transcript level of the stemness associated genes, BMI-1 and CD44. It was also found that both the plant extracts exhibited synergistic potential with the chemotherapeutic drug doxorubicin to inhibit cancer viability. Furthermore, GC-MS/MS analysis revealed the presence of certain novel compounds in both the extracts that are responsible for the anti-cancer role of the extracts. Overall, the results of this report suggest, for the first time, that colocynth fruit pulp extracts may block the proliferative as well as metastatic activity of breast cancer cells.
Cancer Investigation | 2017
Kaushik Chowdhury; Ankit Sharma; Tanu Sharma; Suresh Kumar; Chandi C. Mandal
ABSTRACT Previous reports have documented that cholesterol-lowering simvastatin prevented osteolytic metastasis of breast cancer in animal model in which cancer cells were placed into blood circulation. Thus, simvastatin treatment might have a preventive effect in inhibiting osteoclast activity of metastatic bone microenvironment. This study documented that both simvastatin and MBCD (cholesterol depleting drug) blocked the breast cancer-induced TRAP and MMP activity, and expressions of various osteoclastogenic genes (TRAP, Cathepsin K, and NFATc1) in pre-osteoclast RAW264.7 cells, and osteoclastogenic CSF-1 and RANKL expressions in breast cancer MCF-7 cells. Thus, these findings unravel a molecular mechanism of simvastatin-/MBCD-mediated inhibition of breast cancer-driven osteoclast activity.
Tumor Biology | 2017
Ankit Sharma; Tanu Sharma; Mahaveer S. Panwar; Devesh Sharma; Rashmi Bundel; Ryan T. Hamilton; James A. Radosevich; Chandi C. Mandal
Cancer incidence and/or mortality among individuals varies with diet, socio-culture, ethnicity, race, gender, and age. Similarly, environmental temperature modulates many biological functions. To study the effect of environment temperature on cancer incidence, the US population was selected. Because, county-wise cancer incidence rate data of various anatomical site–specific cancers and different races/ethnicities for both males and females are available. Moreover, the differences amongst the aforementioned factors among individuals are much less, as compared to the world population. Statistical analysis showed a negative correlation between the average annual temperature and cancer incidence rate at all anatomical sites and individually for 13 types (out of 16 types) of anatomical site–specific cancer incidence rates (e.g. uterine, bladder, thyroid, breast, esophagus, ovary, melanoma, non-Hodgkin lymphoma, leukemia, brain, pancreas, etc.) for females. Further analysis found a similar inverse trend in all races/ethnicities of the female population but not in all male races/ethnicities or anatomical site–specific cancers. Moreover, the majority of the counties having the top-most cancer incidence rate in females are located above the latitude 36.5°N. These findings indicate that living in a cold county in the United States might have a higher risk of cancer irrespective of cancer type (except cervical and liver) and races/ethnicities for females but not in all such cases for the male population.
Future Oncology | 2015
Tanu Sharma; Ryan T. Hamilton; Chandi C. Mandal
Current Drug Targets | 2015
Suresh Kumar; Alo Nag; Chandi C. Mandal
Tumor Biology | 2015
Ankit Sharma; Harphool Kumar Verma; Savitri Joshi; Mahaveer Singh Panwar; Chandi C. Mandal