Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chandra Bartholomeusz is active.

Publication


Featured researches published by Chandra Bartholomeusz.


Breast Cancer Research and Treatment | 2012

Role of epidermal growth factor receptor in breast cancer

Hiroko Masuda; Dongwei Zhang; Chandra Bartholomeusz; Hiroyoshi Doihara; Gabriel N. Hortobagyi; Naoto T. Ueno

Decades of research in molecular oncology have brought about promising new therapies which are designed to target specific molecules which promote tumor growth and survival. The epidermal growth factor receptor (EGFR) is one of the first identified important targets of these novel antitumor agents. Approximately half of cases of triple-negative breast cancer (TNBC) and inflammatory breast cancer (IBC) overexpress EGFR. Thus, EGFR inhibitors for treatment of breast cancer have been evaluated in several studies. However, results so far have been disappointing. One of the reasons for these unexpected results is the lack of biomarkers for predicting which patients are most likely to respond to EGFR inhibitors. Recent studies have shown that EGFR and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion and that high EGFR expression is an independent predictor of poor prognosis in IBC. Further, recent studies have shown that targeting EGFR enhances the chemosensitivity of TNBC cells by rewiring apoptotic signaling networks in TNBC. These studies indicate that EGFR-targeted therapy might have a promising role in TNBC and IBC. Further studies of the role of EGFR in TNBC and IBC are needed to better understand the best way to use EGFR-targeted therapy—e.g., as a chemosensitizer or to prevent metastases—to treat these aggressive diseases.


Journal of Clinical Oncology | 2001

Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects : a phase I clinical trial

Gabriel N. Hortobagyi; Naoto T. Ueno; Weiya Xia; Su Zhang; Judith K. Wolf; Joe B. Putnam; Paul L. Weiden; Jie Willey; Mary Carey; Donna Branham; Joy Y. Payne; Stanley D. Tucker; Chandra Bartholomeusz; Robert G. Kilbourn; Robert De Jager; Nour Sneige; Ruth L. Katz; Pervin Anklesaria; Nuhad K. Ibrahim; James L. Murray; Richard L. Theriault; Vicente Valero; David M. Gershenson; Michael W. Bevers; Leaf Huang; Gabriel Lopez-Berestein; Mien Chie Hung

PURPOSE Preclinical studies have demonstrated that the adenovirus type 5 E1A gene is associated with antitumor activities by transcriptional repression of HER-2/neu and induction of apoptosis. Indeed, E1A gene therapy is known to induce regression of HER-2/neu-overexpressing breast and ovarian cancers in nude mice. Therefore, we evaluated the feasibility of intracavitary injection of E1A gene complexed with DC-Chol cationic liposome (DCC-E1A) in patients with both HER-2/neu-overexpressing and low HER-2/neu-expressing breast and ovarian cancers in a phase I clinical trial. PATIENTS AND METHODS An E1A gene complexed with DCC-E1A cationic liposome was injected once a week into the thoracic or peritoneal cavity of 18 patients with advanced cancer of the breast (n = 6) or ovary (n = 12). RESULTS E1A gene expression in tumor cells was detected by immunohistochemical staining and reverse transcriptase-polymerase chain reaction. This E1A gene expression was accompanied by HER-2/neu downregulation, increased apoptosis, and reduced proliferation. The most common treatment-related toxicities were fever, nausea, vomiting, and/or discomfort at the injection sites. CONCLUSION These results argue for the feasibility of intracavitary DCC-E1A administration, provide a clear proof of preclinical concept, and warrant phase II trials to determine the antitumor activity of the E1A gene.


Expert Opinion on Therapeutic Targets | 2012

TARGETING THE PI3K SIGNALING PATHWAY IN CANCER THERAPY

Chandra Bartholomeusz; Ana M. Gonzalez-Angulo

Introduction: The PI3K signaling pathway is involved in the regulation of cancer cell growth, motility, survival and metabolism. The pathway is frequently active in many different types of cancer—e.g., breast, bladder, prostate, thyroid, ovarian and NSCLC. Targetable genetic aberrations in this pathway give us many opportunities for development of targeted therapies for different types of cancer. Areas covered: The genetic alterations in the PI3K/mammalian target of rapamycin (mTOR)/Akt pathway, as well as the drugs that target this pathway, either alone, in combination with other targeted agents or in chemotherapy. Targeted inhibitors of the PI3K pathway currently being tested in clinical trials in different types of human cancer. Expert opinion: Small-molecule inhibitors targeting the PI3K/Akt/mTOR pathway show some success with these agents in current clinical trials. For further improvement in response, molecular correlates that can be used for patient selection, need to be determined. A more efficient and effective way to screen for patients to determine which patients are most likely to benefit from PI3K pathway inhibitors is also needed.


Cancer Research | 2007

Acquired Resistance to Erlotinib in A-431 Epidermoid Cancer Cells Requires Down-regulation of MMAC1/PTEN and Up-regulation of Phosphorylated Akt

Fumiyuki Yamasaki; Mary J. Johansen; Dongwei Zhang; Savitri Krishnamurthy; Edward Felix; Chandra Bartholomeusz; Richard J. Aguilar; Kaoru Kurisu; Gordon B. Mills; Gabriel N. Hortobagyi; Naoto Ueno

Erlotinib (Tarceva), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has clinical activity in advanced lung cancer, but disease that initially responds to erlotinib eventually progresses. The mechanism of this acquired resistance is unclear. We established two erlotinib-resistant pools of A-431 cells, a well-characterized epidermoid cancer cell line that constitutively overexpresses EGFR and is sensitive to erlotinib, by continuous exposure to erlotinib over a 6-month period. The extent of EGFR gene amplification or mutation of the EGFR tyrosine kinase domain was not altered in the resistant cells. Intracellular erlotinib concentrations, determined by liquid chromatography-tandem mass spectrometry, were almost the same in all three cell lines. Immunoprecipitation with EGFR antibody followed by detection with phosphotyrosine antibody revealed that erlotinib effectively reduced EGFR phosphorylation in both parental cells and resistant cells. Erlotinib induced mutated in multiple advanced cancers 1/phosphatase and tensin homologue (MMAC1/PTEN) and suppressed phosphorylated Akt (Ser(473)) but not in the erlotinib-resistant cells. Overexpression of MMAC1/PTEN by transfection with Ad.MMAC1/PTEN or by pharmacologic suppression of Akt activity restored erlotinib sensitivity in both resistant pools. Further, transfection of parental A-431 cells with constitutively active Akt was sufficient to cause resistance to erlotinib. We propose that acquired erlotinib resistance associated with MMAC1/PTEN down-regulation and Akt activation could be overcome by inhibitors of signaling through the phosphatidylinositol 3-kinase pathway.


Molecular Cancer Therapeutics | 2008

Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells.

Dongwei Zhang; Ashutosh Pal; William G. Bornmann; Fumiyuki Yamasaki; Francisco J. Esteva; Gabriel N. Hortobagyi; Chandra Bartholomeusz; Naoto Ueno

Epidermal growth factor receptor (EGFR/ErbB1) and HER2 (ErbB2/neu), members of the ErbB receptor tyrosine kinase family, are frequently overexpressed in breast cancer and are known to drive tumor growth and progression, making them promising targets for cancer therapy. Lapatinib is a selective competitive inhibitor of both the HER2 and EGFR tyrosine kinases. Although lapatinib showed significant activity in patients with HER2-positive breast cancer, the role of EGFR in the response of breast cancer to lapatinib has not been defined. Here, we examined the role of EGFR expression levels in the sensitivity of HER2-overexpressing breast cancer cells to lapatinib. Depletion of EGFR by EGFR small-interfering RNA knockdown did not affect lapatinib sensitivity in these cells, whereas treated HER2 siRNA knockdown cells became more resistant to lapatinib. We conclude that the in vitro activity of lapatinib is not dependent on EGFR expression level in HER2-overexpressing breast cancer cells. [Mol Cancer Ther 2008;7(7):1846–50]


Molecular Cancer Therapeutics | 2007

Sensitivity of breast cancer cells to erlotinib depends on cyclin-dependent kinase 2 activity

Fumiyuki Yamasaki; Dongwei Zhang; Chandra Bartholomeusz; Tamotsu Sudo; Gabriel N. Hortobagyi; Kaoru Kurisu; Naoto Ueno

Inhibitors of epidermal growth factor receptor (EGFR) tyrosine kinases, such as erlotinib and gefitinib, have not been very effective in the treatment of breast cancer although many breast cancer cells express EGFR. To address this apparent paradox, we examined possible predictors of the sensitivity of 10 breast cancer cell lines to erlotinib in light of cyclin-dependent kinase 2 (CDK2), considered the farthest downstream kinase that controls cell cycling in the EGFR signaling pathway. Expression of EGFR and HER2 were not associated with sensitivity to erlotinib. Expression of phosphorylated (p-)tyrosine, p-Akt, phosphorylated extracellular signal-regulated kinase (p-ERK) 1/ERK2 (p42/p44), and p27 after treatment of erlotinib was not associated with erlotinib sensitivity. However, suppression of CDK2 activity after erlotinib treatment correlated with erlotinib sensitivity (P < 0.0001). Restoration of CDK2 activity partially restored proliferation and induced erlotinib resistance in erlotinib-sensitive cell lines, indicating that sensitivity to erlotinib in these breast cancer cells depends, at least in part, on CDK2 activity. p27, an inhibitor of CDK2, was not translocated into the nucleus in erlotinib-resistant cell lines. Knocking down p27 protein partially blocked erlotinib-induced cell death and cell cycle arrest. These findings indicate that the ability of erlotinib to suppress CDK2 activity is critical for cellular sensitivity to erlotinib, regardless of EGFR expression level, and that the presence of p27 in the cytoplasm also participates in erlotinib resistance. [Mol Cancer Ther 2007;6(8):2168–77]


Cancer Research | 2008

PEA-15 Induces Autophagy in Human Ovarian Cancer Cells and Is Associated with Prolonged Overall Survival

Chandra Bartholomeusz; Daniel G. Rosen; Caimiao Wei; Fumiyuki Yamasaki; Takeshi Takahashi; Hiroaki Itamochi; Seiji Kondo; Jinsong Liu; Naoto Ueno

Phospho-enriched protein in astrocytes (PEA-15) is a 15-kDa phosphoprotein that slows cell proliferation by binding to and sequestering extracellular signal-regulated kinase (ERK) in the cytoplasm, thereby inhibiting ERK-dependent transcription and proliferation. In previous studies of E1A human gene therapy for ovarian cancer, we discovered that PEA-15 induced the antitumor effect of E1A by sequestering activated ERK in the cytoplasm of cancer cells. Here, we investigated the role of PEA-15 in ovarian cancer tumorigenesis, the expression levels of PEA-15 in human ovarian cancer, and whether PEA-15 expression correlated with overall survival in women with ovarian cancer. We overexpressed PEA-15 in low-PEA-15-expressing cells and knocked down PEA-15 in high-PEA-15-expressing cells and analyzed the effects on proliferation, anchorage-independent growth, and cell cycle progression. We then assessed PEA-15 expression in an annotated tissue microarray of tumor samples from 395 women with primary epithelial ovarian cancer and tested whether PEA-15 expression was linked with overall survival. PEA-15 expression inhibited proliferation, and cell cycle analysis did not reveal apoptosis but did reveal autophagy, which was confirmed by an increase in LC3 cleavage. Inhibition of the ERK1/2 pathway decreased PEA-15-induced autophagy. These findings suggest that the antitumor activity of PEA-15 is mediated, in part, by the induction of autophagy involving activation of the ERK1/2 pathway. Multivariable analyses indicated that the women with high-PEA-15-expressing tumors survived longer than those with low-PEA-15-expressing tumors (hazard ratio, 1.973; P = 0.0167). Our findings indicate that PEA-15 expression is an important prognostic marker in ovarian cancer.


Oncologist | 2012

High ERK Protein Expression Levels Correlate with Shorter Survival in Triple-Negative Breast Cancer Patients

Chandra Bartholomeusz; Ana M. Gonzalez-Angulo; Ping Liu; Naoki Hayashi; Ana Lluch; Jaime Ferrer-Lozano; Gabriel N. Hortobagyi

The mitogen-activated protein kinase (MAPK) signaling pathway is known to be activated in triple-negative breast cancer (TNBC). Extracellular signal-related kinase (ERK), a member of the MAPK pathway, promotes cell proliferation, angiogenesis, cell differentiation, and cell survival. To assess the prognostic impact of ERK in TNBC patients, relative quantities of ERK (ERK-2 and pMAPK) and direct targets of the ERK pathway (MAPK/ERK kinase 1, phospho-enriched protein in astrocytes [PEA]-15, phosphorylated (p)PEA-15, tuberous sclerosis protein 2, p70S6 kinase, and p27) were measured using reverse-phase protein arrays in tumor tissue from patients with TNBC (n = 97) and non-TNBC (n = 223). Protein levels in patients with TNBC were correlated with clinical and tumor characteristics and outcome. The median age of patients with TNBC was 55 years (range, 27-86 years). Disease stage was I in 21%, II in 60%, and III in 20% of the patients. In a multivariate analysis, among patients with TNBC, those with ERK-2-overexpressing tumors had a lower overall survival rate than those with low ERK-2-expressing tumors (hazard ratio [HR], 2.76; 95% confidence interval [CI], 1.19-6.41). However, high pMAPK levels were associated with a significantly higher relapse-free survival rate (HR, 0.66; 95% CI, 0.46-0.95). In conclusion, ERK-2 and pMAPK are valuable prognostic markers in TNBC. Further studies are justified to elucidate ERKs role in TNBC tumorigenicity and metastasis.


Clinical Cancer Research | 2010

PEA-15 inhibits tumorigenesis in an MDA-MB-468 triple-negative breast cancer xenograft model through increased cytoplasmic localization of activated extracellular signal-regulated kinase.

Chandra Bartholomeusz; Ana M. Gonzalez-Angulo; Savitri Krishnamurthy; Ping Liu; Linda X H Yuan; Fumiyuki Yamasaki; Shuying Liu; Naoki Hayashi; Dongwei Zhang; Francisco J. Esteva; Gabriel N. Hortobagyi; Naoto Ueno

Purpose: To determine the role of PEA-15 in breast cancer. Experimental Design: A reverse-phase protein array was used to measure PEA-15 expression levels in 320 human breast cancers; these levels were correlated with clinical and tumor characteristics. PEA-15 was overexpressed by an adenovirus vector or by stably expressing PEA-15 in different breast cancer cell lines. The effects on breast cancer cell survival and on the downstream apoptotic signaling pathway were measured in terms of cell proliferation (trypan blue for cell viability, bromodeoxyuridine incorporation for DNA synthesis), anchorage-independent growth (soft agar colony formation), and apoptosis (fluorescence-activated cell sorter analysis). The preclinical efficacy of Ad.PEA-15 given intratumorally was evaluated in nude mice bearing tumors from s.c. implanted human MDA-MB-468 triple-negative breast cancer cells. Results: In human breast cancers, low levels of PEA-15 expression correlated with high nuclear grade (P < 0.0001) and with negative hormone receptor status (P = 0.0004). Overexpression of PEA-15 in breast cancer cells resulted in growth inhibition, reduction in DNA synthesis, and onset of caspase-8–dependent apoptosis. In athymic nude mice bearing MDA-MB-468 xenografts, tumor volumes were significantly smaller in mice treated intratumorally with Ad.PEA-15 than in control mice (P < 0.0001). Tumors from mice treated with Ad.PEA-15 had increased levels of activated (phosphorylated) extracellular signal-regulated kinase and reduced levels of Ki-67 compared with tumors from nontreated or control-adenovirus–treated mice. Conclusion: PEA-15 has therapeutic potential in breast cancer. Further preclinical and clinical exploration of PEA-15 as a druggable target is warranted. Clin Cancer Res; 16(6); 1802–11


Oncogene | 2006

Antitumor effect of E1A in ovarian cancer by cytoplasmic sequestration of activated ERK by PEA15

Chandra Bartholomeusz; Hiroaki Itamochi; Masayuki Nitta; Hideyuki Saya; Mark H. Ginsberg; Naoto Ueno

The adenovirus type 5 gene E1A is known to suppress tumorigenicity by transcriptionally downregulating HER-2/neu (HER2) or by inducing apoptosis. We show here that E1A also suppressed the tumorigenicity of the low-HER2-expressing ovarian cancer cell line OVCAR-3 by decreasing cell proliferation. We further found that the mechanism responsible for this reduced proliferation is the presence of PEA15 (phosphoprotein enriched in astrocytes), which is upregulated by E1A in ovarian cancer; PEA15 promotes translocation of ERK from the nucleus to the cytoplasm, leading to inhibition of ERK-dependent transcription and proliferation. Indeed, siRNA-mediated knockdown of PEA15 expression in OVCAR-3 stable E1A transfectants resulted in a nuclear accumulation of the active form of ERK, followed by an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. Finally, PEA15 by itself suppressed colony formation in breast and ovarian cancer cell lines, in which E1A is known to have antitumor activity. We conclude that part of the antitumor effect of E1A in ovarian cancer results from cytoplasmic sequestration of the activated form of ERK by PEA15.

Collaboration


Dive into the Chandra Bartholomeusz's collaboration.

Top Co-Authors

Avatar

Naoto T. Ueno

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel N. Hortobagyi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xuemei Xie

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kevin N. Dalby

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jangsoon Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaurav B. Chauhan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hitomi Saso

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tamer S. Kaoud

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge