Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chandra Bhan Yadav is active.

Publication


Featured researches published by Chandra Bhan Yadav.


PLOS ONE | 2014

Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L.).

Mehanathan Muthamilarasan; Rohit Khandelwal; Chandra Bhan Yadav; Venkata Suresh Bonthala; Yusuf Khan; Manoj Prasad

MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I - X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.


Plant Cell Tissue and Organ Culture | 2014

Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database

Yusuf Khan; Amita Yadav; Venkata Suresh Bonthala; Mehanathan Muthamilarasan; Chandra Bhan Yadav; Manoj Prasad

Abstract MicroRNA (miRNA)-guided post-transcriptional regulation is an important mechanism of gene regulation during multiple biological processes including response to abiotic stresses. Foxtail millet is a model crop, which is genetically closely related to several bioenergy grasses and also known for its potential abiotic stress tolerance. Hence deciphering the role of miRNAs in regulating stress-responsive mechanism would enable imparting durable stress tolerance in both millets and bioenergy grasses. Considering this, a comprehensive genome-wide in silico analysis was performed in foxtail millet which identified 355 mature miRNAs along with their secondary structure as well as corresponding targets. Predicted miRNA targets were found to encode various DNA binding proteins, transcription factors or important functional enzymes, which could be the crucial regulators in plant abiotic stress responses. All the 355 miRNAs were physically mapped onto the foxtail millet genome and in silico tissue-specific expression for these miRNAs were studied. Comparative mapping of the 355 miRNAs between foxtail millet and other related grass species would assist miRNA studies in these genetically closely-related plants. Expression profiling was performed for eight candidate miRNAs under diverse abiotic stresses in foxtail millet, which unravelled the putative involvement of these miRNAs in stress tolerance. With an aim of providing the generated miRNA marker information to the global scientific community, a foxtail millet MiRNA Database (FmMiRNADb: http://59.163.192.91/FmMiRNADb/index.html) has also been constructed. Overall, the present study provides novel insights onto the role of miRNAs in abiotic stress tolerance and would promisingly expedite research on post-transcriptional regulation of stress-related genes in millets and bioenergy grasses.


Plant Molecular Biology Reporter | 2015

Identification, Characterization and Expression Profiling of Dicer-Like, Argonaute and RNA-Dependent RNA Polymerase Gene Families in Foxtail Millet

Chandra Bhan Yadav; Mehanathan Muthamilarasan; Garima Pandey; Manoj Prasad

Post-transcriptional control of gene expression is achieved through RNA interference where the activities of Dicer-like (DCL), Argonautes (AGO) and RNA-dependent RNA polymerases (RDRs) are significant. Hence, considering the importance of DCL, AGO and RDRs, a comprehensive genome-wide analysis was performed in foxtail millet. The study identified 8 DCL, 19 AGO and 11 RDR genes. Phylogenetic and domain analysis provided interesting information on the evolutionary and structural aspects of these proteins. The orthologs of Setaria italica DCL (SiDCL), AGO (SiAGO) and RDRs (SiRDRs) were identified in sorghum, maize and rice, and the evolutionary relationships among the orthologous gene pairs were investigated. Promoter analysis of SiDCL, SiAGO and SiRDR genes revealed the presence of unique and common cis-acting elements at the upstream of respective gene sequences, which serves as binding sites for several developmental and stress-related transcription factors. In silico expression profiling using RNA-sequence data showed tissue-specific expression patterns of these genes in foxtail millet. Candidate genes representing each sub-family were chosen for expression analysis through quantitative real-time PCR (qRT-PCR) under salinity, dehydration and hormonal treatments. It revealed the differential expression pattern of candidate genes at different time points of stresses. This is the first report on genome-wide analysis of SiDCL, SiAGO and SiRDR gene families in foxtail millet, which provides basic genomic information and insights into the putative roles of these genes in abiotic stresses. The present study will serve as a base for further functional characterization of these gene families in foxtail millet and related grass species.


DNA Research | 2015

Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database

Chandra Bhan Yadav; Venkata Suresh Bonthala; Mehanathan Muthamilarasan; Garima Pandey; Yusuf Khan; Manoj Prasad

Transposable elements (TEs) are major components of plant genome and are reported to play significant roles in functional genome diversity and phenotypic variations. Several TEs are highly polymorphic for insert location in the genome and this facilitates development of TE-based markers for various genotyping purposes. Considering this, a genome-wide analysis was performed in the model plant foxtail millet. A total of 30,706 TEs were identified and classified as DNA transposons (24,386), full-length Copia type (1,038), partial or solo Copia type (10,118), full-length Gypsy type (1,570), partial or solo Gypsy type (23,293) and Long- and Short-Interspersed Nuclear Elements (3,659 and 53, respectively). Further, 20,278 TE-based markers were developed, namely Retrotransposon-Based Insertion Polymorphisms (4,801, ∼24%), Inter-Retrotransposon Amplified Polymorphisms (3,239, ∼16%), Repeat Junction Markers (4,451, ∼22%), Repeat Junction-Junction Markers (329, ∼2%), Insertion-Site-Based Polymorphisms (7,401, ∼36%) and Retrotransposon-Microsatellite Amplified Polymorphisms (57, 0.2%). A total of 134 Repeat Junction Markers were screened in 96 accessions of Setaria italica and 3 wild Setaria accessions of which 30 showed polymorphism. Moreover, an open access database for these developed resources was constructed (Foxtail millet Transposable Elements-based Marker Database; http://59.163.192.83/ltrdb/index.html). Taken together, this study would serve as a valuable resource for large-scale genotyping applications in foxtail millet and related grass species.


PLOS ONE | 2015

Genome-Wide SNP Identification and Characterization in Two Soybean Cultivars with Contrasting Mungbean Yellow Mosaic India Virus Disease Resistance Traits

Chandra Bhan Yadav; Priyanka Bhareti; Mehanathan Muthamilarasan; Minakshi Mukherjee; Yusuf Khan; Pushpendra Rathi; Manoj Prasad

Mungbean yellow mosaic India virus (MYMIV) is a bipartite Geminivirus, which causes severe yield loss in soybean (Glycine max). Considering this, the present study was conducted to develop large-scale genome-wide single nucleotide polymorphism (SNP) markers and identify potential markers linked with known disease resistance loci for their effective use in genomics-assisted breeding to impart durable MYMIV tolerance. The whole-genome re-sequencing of MYMIV resistant cultivar ‘UPSM-534’ and susceptible Indian cultivar ‘JS-335’ was performed to identify high-quality SNPs and InDels (insertion and deletions). Approximately 234 and 255 million of 100-bp paired-end reads were generated from UPSM-534 and JS-335, respectively, which provided ~98% coverage of reference soybean genome. A total of 3083987 SNPs (1559556 in UPSM-534 and 1524431 in JS-335) and 562858 InDels (281958 in UPSM-534 and 280900 in JS-335) were identified. Of these, 1514 SNPs were found to be present in 564 candidate disease resistance genes. Among these, 829 non-synonymous and 671 synonymous SNPs were detected in 266 and 286 defence-related genes, respectively. Noteworthy, a non-synonymous SNP (in chromosome 18, named 18-1861613) at the 149th base-pair of LEUCINE-RICH REPEAT RECEPTOR-LIKE PROTEIN KINASE gene responsible for a G/C transversion [proline (CCC) to alanine(GCC)] was identified and validated in a set of 12 soybean cultivars. Taken together, the present study generated a large-scale genomic resource such as, SNPs and InDels at a genome-wide scale that will facilitate the dissection of various complex traits through construction of high-density linkage maps and fine mapping. In the present scenario, these markers can be effectively used to design high-density SNP arrays for their large-scale validation and high-throughput genotyping in diverse natural and mapping populations, which could accelerate genomics-assisted MYMIV disease resistance breeding in soybean.


Scientific Reports | 2016

Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance.

Chandra Bhan Yadav; Mehanathan Muthamilarasan; Anand Dangi; Shweta Shweta; Manoj Prasad

SET domain-containing genes catalyse histone lysine methylation, which alters chromatin structure and regulates the transcription of genes that are involved in various developmental and physiological processes. The present study identified 53 SET domain-containing genes in C4 panicoid model, foxtail millet (Setaria italica) and the genes were physically mapped onto nine chromosomes. Phylogenetic and structural analyses classified SiSET proteins into five classes (I-V). RNA-seq derived expression profiling showed that SiSET genes were differentially expressed in four tissues namely, leaf, root, stem and spica. Expression analyses using qRT-PCR was performed for 21 SiSET genes under different abiotic stress and hormonal treatments, which showed differential expression of these genes during late phase of stress and hormonal treatments. Significant upregulation of SiSET gene was observed during cold stress, which has been confirmed by over-expressing a candidate gene, SiSET14 in yeast. Interestingly, hypermethylation was observed in gene body of highly differentially expressed genes, whereas methylation event was completely absent in their transcription start sites. This suggested the occurrence of demethylation events during various abiotic stresses, which enhance the gene expression. Altogether, the present study would serve as a base for further functional characterization of SiSET genes towards understanding their molecular roles in conferring stress tolerance.


African Journal of Biotechnology | 2011

Cloning and characterization of cDNA encoding xyloglucan endotransglucosylase in Pennisetum glaucum L.

Mk Srivastava; Chandra Bhan Yadav; Y Bhat; Suresh Kumar

Biomass production in plant is directly related to the amount of intercepted solar radiation by the canopy and available water to the plant. Growth and development of leaves, especially under drought condition, is therefore major determinant of crop productivity. Xyloglucan endotransglucosylase (XET) plays important role in growth and development of plants. XETs are a family of enzymes that mediate construction and restructuring of xyloglucan cross-links, thereby controlling the mechanical properties of cell wall. We cloned complete cDNA of an XET from pearl millet ( Pennisetum glaucum L.) and characterized it using in silico comparative genomics and activity assays. The cloned cDNA was 1266 bp in length, encoding a protein with 291 amino acids having signal peptide targeting it to the cell wall. The protein showed xyloglucan endotransglucosylase activity but no hydrolytic activity, therefore, named as PgXET1 as per the convention. The comparative genomics revealed that the functional sites of the enzyme (XET) were highly conserved. Evolutionary studies using phylogenetic tree indicated its grouping with XETs from maize (with >95% bootstrap support), barley, rice, etc. This is the first report on cloning and characterization of an XET (PgXET1) from pearl millet, an important dual-purpose crop. Key words: Xyloglucan endotransglucosylase, Pennisetum glaucum, pearl millet, primary cell wall, cell expansion, drought tolerance.


Archive | 2018

Epigenetics and Epigenomics of Plants

Chandra Bhan Yadav; Garima Pandey; Mehanathan Muthamilarasan; Manoj Prasad

The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.


Archive | 2017

Transposable Elements in Setaria Genomes

Chandra Bhan Yadav; Manoj Prasad

Large fractions of millet genomes are saturated with repetitive elements in which the major portion of repeats are contributed by transposable elements (TEs) which are also known as selfish genetic elements. These elements are capable of mobilizing in the genome from one position to another through transposition or retro-transposition with the help of certain specific enzymes coded by these TEs themselves. Recent advances in genome sequencing and assembly techniques provide an opportunity to enlighten our views on the current understanding of millet TE diversity and evolution in the genome. Transposable elements (TEs) represent approximately 40% of assembled millet genomes, and deeply branching lineages such as rice, maize, and other grass genomes exhibit a higher TE diversity in comparison to other plant taxa. With the advancement of sequencing techniques and availability of assembled genomes, long-read sequencing should soon provide access to TE-rich genomic regions of TE and their architecture in the genome. Furthermore, the current bottleneck in genome analyses and annotation of TEs could also be resolved to avoid misleading conclusions on repeat architecture and their involvement in genome evolution.


Molecular Breeding | 2014

Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species

Chandra Bhan Yadav; Mehanathan Muthamilarasan; Garima Pandey; Yusuf Khan; Manoj Prasad

Collaboration


Dive into the Chandra Bhan Yadav's collaboration.

Top Co-Authors

Avatar

Manoj Prasad

University of Hyderabad

View shared research outputs
Top Co-Authors

Avatar

Yusuf Khan

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Venkata Suresh Bonthala

University of Nottingham Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar

Suresh Kumar

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anuj

University of Delhi

View shared research outputs
Top Co-Authors

Avatar

M. G. Gupta

Indian Grassland and Fodder Research Institute

View shared research outputs
Top Co-Authors

Avatar

Pranav Pankaj Sahu

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge