Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chandra S. Boosani is active.

Publication


Featured researches published by Chandra S. Boosani.


Seminars in Cancer Biology | 2015

Broad targeting of resistance to apoptosis in cancer

Ramzi M. Mohammad; Irfana Muqbil; Leroy Lowe; Clement Yedjou; Hsue Yin Hsu; Liang Tzung Lin; Markus D. Siegelin; Carmela Fimognari; Nagi B. Kumar; Q. Ping Dou; Huanjie Yang; Abbas K. Samadi; Gian Luigi Russo; Carmela Spagnuolo; Swapan K. Ray; Mrinmay Chakrabarti; James D. Morre; Helen M. Coley; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Dipita Bhakta

Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.


Seminars in Cancer Biology | 2015

Tissue invasion and metastasis: Molecular, biological and clinical perspectives

Wen Guo Jiang; Andrew James Sanders; M. Katoh; Hendrik Ungefroren; Frank Gieseler; Mark E. Prince; Sarah K. Thompson; Massimo Zollo; D. Spano; Punita Dhawan; Daniel Sliva; Pochi R. Subbarayan; Malancha Sarkar; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Lin Ye; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Asfar S. Azmi; W. N. Keith

Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.


Seminars in Cancer Biology | 2015

Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition

Lynnette R. Ferguson; Helen Chen; Andrew R. Collins; Marisa Connell; Giovanna Damia; Santanu Dasgupta; Meenakshi Malhotra; Alan K. Meeker; Amedeo Amedei; Amr Amin; S. Salman Ashraf; Katia Aquilano; Asfar S. Azmi; Dipita Bhakta; Alan Bilsland; Chandra S. Boosani; Sophie Chen; Maria Rosa Ciriolo; Hiromasa Fujii; Gunjan Guha; Dorota Halicka; William G. Helferich; W. Nicol Keith; Sulma I. Mohammed; Elena Niccolai; Xujuan Yang; Kanya Honoki; Virginia R. Parslow; Satya Prakash; Sarallah Rezazadeh

Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.


Seminars in Cancer Biology | 2015

Cancer prevention and therapy through the modulation of the tumor microenvironment

Stephanie C. Casey; Amedeo Amedei; Katia Aquilano; Asfar S. Azmi; Fabian Benencia; Dipita Bhakta; Alan Bilsland; Chandra S. Boosani; Sophie Chen; Maria Rosa Ciriolo; Sarah Crawford; Hiromasa Fujii; Alexandros G. Georgakilas; Gunjan Guha; Dorota Halicka; William G. Helferich; Petr Heneberg; Kanya Honoki; W. Nicol Keith; Sid P. Kerkar; Sulma I. Mohammed; Elena Niccolai; Somaira Nowsheen; H.P. Vasantha Rupasinghe; Abbas K. Samadi; Neetu Singh; Wamidh H. Talib; Vasundara Venkateswaran; Richard L. Whelan; Xujuan Yang

Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.


Seminars in Cancer Biology | 2015

Sustained proliferation in cancer: Mechanisms and novel therapeutic targets.

Mark A. Feitelson; Alla Arzumanyan; Rob J. Kulathinal; Stacy W. Blain; Randall F. Holcombe; Jamal Mahajna; Maria Marino; Maria L. Martinez-Chantar; Roman Nawroth; Isidro Sánchez-García; Dipali Sharma; Neeraj K. Saxena; Neetu Singh; Panagiotis J. Vlachostergios; Shanchun Guo; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Alan Bilsland; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Sulma I. Mohammed; Asfar S. Azmi

Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.


Seminars in Cancer Biology | 2015

A multi-targeted approach to suppress tumor-promoting inflammation.

Abbas K. Samadi; Alan Bilsland; Alexandros G. Georgakilas; Amedeo Amedei; Amr Amin; Anupam Bishayee; Asfar S. Azmi; Bal L. Lokeshwar; Brendan Grue; Carolina Panis; Chandra S. Boosani; Deepak Poudyal; Diana M. Stafforini; Dipita Bhakta; Elena Niccolai; Gunjan Guha; H.P. Vasantha Rupasinghe; Hiromasa Fujii; Kanya Honoki; Kapil Mehta; Katia Aquilano; Leroy Lowe; Lorne J. Hofseth; Luigi Ricciardiello; Maria Rosa Ciriolo; Neetu Singh; Richard L. Whelan; Rupesh Chaturvedi; S. Salman Ashraf; H. M. C. Shantha Kumara

Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.


Seminars in Cancer Biology | 2015

Therapeutic targeting of replicative immortality

Paul Yaswen; Karen L. MacKenzie; W. Nicol Keith; Patricia Hentosh; Francis Rodier; Jiyue Zhu; Gary L. Firestone; Ander Matheu; Amancio Carnero; Alan Bilsland; Tabetha Sundin; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Amr Amin; Bill Helferich; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Sophie Chen; Sulma I. Mohammed; Asfar S. Azmi; Dipita Bhakta; Dorota Halicka; Elena Niccolai; Katia Aquilano; S. Salman Ashraf; Somaira Nowsheen; Xujuan Yang

One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.


Seminars in Cancer Biology | 2015

Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds.

A.R.M. Ruhul Amin; Phillip Karpowicz; Thomas E. Carey; Jack L. Arbiser; Rita Nahta; Zhuo Georgia Chen; Jin-Tang Dong; Omer Kucuk; Gazala N. Khan; Gloria S. Huang; Shijun Mi; Ho Young Lee; Joerg Reichrath; Kanya Honoki; Alexandros G. Georgakilas; Amedeo Amedei; Amr Amin; Bill Helferich; Chandra S. Boosani; Maria Rosa Ciriolo; Sophie Chen; Sulma I. Mohammed; Asfar S. Azmi; W. Nicol Keith; Dipita Bhakta; Dorota Halicka; Elena Niccolai; Hiromasa Fujii; Katia Aquilano; S. Salman Ashraf

The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.


Molecular Biology Reports | 2015

Methylation and microRNA-mediated epigenetic regulation of SOCS3

Chandra S. Boosani; Devendra K. Agrawal

Abstract Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.


PLOS ONE | 2016

MicroRNAs Associated with Shoulder Tendon Matrisome Disorganization in Glenohumeral Arthritis.

Finosh G. Thankam; Chandra S. Boosani; Matthew F. Dilisio; Nicholas E. Dietz; Devendra K. Agrawal

The extracellular matrix (ECM) provides core support which is essential for the cell and tissue architectural development. The role of ECM in many pathological conditions has been well established and ECM-related abnormalities leading to serious consequences have been identified. Though much has been explored in regards to the role of ECM in soft tissue associated pathologies, very little is known about its role in inflammatory disorders in tendon. In this study, we performed microRNA (miRNA) expression analysis in the long head of the human shoulder biceps tendon to identify key genes whose expression was altered during inflammation in patients with glenohumeral arthritis. We identified differential regulation of matrix metalloproteinases (MMPs) that could be critical in collagen type replacement during tendinopathy. The miRNA profiling showed consistent results between the groups and revealed significant changes in the expression of seven different miRNAs in the inflamed tendons. Interestingly, all of these seven miRNAs were previously reported to have either a direct or indirect role in regulating the ECM organization in other pathological disorders. In addition, these miRNAs were also found to alter the expression levels of MMPs, which are the key matrix degrading enzymes associated with ECM-related abnormalities and pathologies. To our knowledge, this is the first report which identifies specific miRNAs associated with inflammation and the matrix reorganization in the tendons. Furthermore, the findings also support the potential role of these miRNAs in altering the collagen type ratio in the tendons during inflammation which is accompanied with differential expression of MMPs.

Collaboration


Dive into the Chandra S. Boosani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanya Honoki

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katia Aquilano

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Maria Rosa Ciriolo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alexandros G. Georgakilas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Amr Amin

United Arab Emirates University

View shared research outputs
Researchain Logo
Decentralizing Knowledge