Chandra Saripalli
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chandra Saripalli.
Circulation | 2013
Silvia Rain; M. Louis Handoko; Pia Trip; C. Tji-Joong Gan; Nico Westerhof; Ger J.M. Stienen; Walter J. Paulus; C. Ottenheijm; J. Tim Marcus; Peter Dorfmüller; Christophe Guignabert; Marc Humbert; P. Macdonald; Cris dos Remedios; Piet E. Postmus; Chandra Saripalli; Carlos Hidalgo; Henk Granzier; Anton Vonk-Noordegraaf; Jolanda van der Velden; Frances S. de Man
Background— The role of right ventricular (RV) diastolic stiffness in pulmonary arterial hypertension (PAH) is not well established. Therefore, we investigated the presence and possible underlying mechanisms of RV diastolic stiffness in PAH patients. Methods and Results— Single-beat RV pressure-volume analyses were performed in 21 PAH patients and 7 control subjects to study RV diastolic stiffness. Data are presented as mean±SEM. RV diastolic stiffness (&bgr;) was significantly increased in PAH patients (PAH, 0.050±0.005 versus control, 0.029±0.003; P<0.05) and was closely associated with disease severity. Subsequently, we searched for possible underlying mechanisms using RV tissue of PAH patients undergoing heart/lung transplantation and nonfailing donors. Histological analyses revealed increased cardiomyocyte cross-sectional areas (PAH, 453±31 &mgr;m2 versus control, 218±21 &mgr;m2; P<0.001), indicating RV hypertrophy. In addition, the amount of RV fibrosis was enhanced in PAH tissue (PAH, 9.6±0.7% versus control, 7.2±0.6%; P<0.01). To investigate the contribution of stiffening of the sarcomere (the contractile apparatus of RV cardiomyocytes) to RV diastolic stiffness, we isolated and membrane-permeabilized single RV cardiomyocytes. Passive tension at different sarcomere lengths was significantly higher in PAH patients compared with control subjects (>200%; Pinteraction<0.001), indicating stiffening of RV sarcomeres. An important regulator of sarcomeric stiffening is the sarcomeric protein titin. Therefore, we investigated titin isoform composition and phosphorylation. No alterations were observed in titin isoform composition (N2BA/N2B ratio: PAH, 0.78±0.07 versus control, 0.91±0.08), but titin phosphorylation in RV tissue of PAH patients was significantly reduced (PAH, 0.16±0.01 arbitrary units versus control, 0.20±0.01 arbitrary units; P<0.05). Conclusions— RV diastolic stiffness is significantly increased in PAH patients, with important contributions from increased collagen and intrinsic stiffening of the RV cardiomyocyte sarcomeres.
Circulation | 2014
Mei Methawasin; Kirk R. Hutchinson; Eun-Jeong Lee; John E. Smith; Chandra Saripalli; Carlos Hidalgo; C. Ottenheijm; Henk Granzier
Background— Experimentally upregulating compliant titins has been suggested as a therapeutic for lowering pathological diastolic stiffness levels. However, how increasing titin compliance impacts global cardiac function requires in-depth study. We investigate the effect of upregulating compliant titins in a novel mouse model with a genetically altered titin splicing factor; integrative approaches were used from intact cardiomyocyte mechanics to pressure-volume analysis and Doppler echocardiography. Methods and Results— Compliant titins were upregulated through deletion of the RNA Recognition Motif of the splicing factor RBM20 (Rbm20&Dgr;RRMmice). A genome-wide exon expression analysis and a candidate approach revealed that the phenotype is likely to be dominated by greatly increased lengths of titin’s spring elements. At both cardiomyocyte and left ventricular chamber levels, diastolic stiffness was reduced in heterozygous (+/−) Rbm20&Dgr;RRMmice with a further reduction in homozygous (−/−) mice at only the intact myocyte level. Fibrosis was present in only −/− Rbm20&Dgr;RRM hearts. The Frank-Starling Mechanism was reduced in a graded fashion in Rbm20&Dgr;RRM mice, at both the cardiomyocyte and left ventricular chamber levels. Exercise tests revealed an increase in exercise capacity in +/− mice. Conclusions— Titin is not only important in diastolic but also in systolic cardiac function. Upregulating compliant titins reduces diastolic chamber stiffness owing to the increased compliance of myocytes, but it depresses end-systolic elastance; under conditions of exercise, the beneficial effects on diastolic function dominate. Therapeutic manipulation of the RBM20-based splicing system might be able to minimize effects on fibrosis and systolic function while improving the diastolic function in patients with heart failure.
Circulation | 2013
Charles S. Chung; Kirk R. Hutchinson; Mei Methawasin; Chandra Saripalli; John E. Smith; Carlos Hidalgo; Xiuju Luo; Siegfried Labeit; Caiying Guo; Henk Granzier
Background— Diastolic dysfunction is a poorly understood but clinically pervasive syndrome that is characterized by increased diastolic stiffness. Titin is the main determinant of cellular passive stiffness. However, the physiological role that the tandem immunoglobulin (Ig) segment of titin plays in stiffness generation and whether shortening this segment is sufficient to cause diastolic dysfunction need to be established. Methods and Results— We generated a mouse model in which 9 Ig-like domains (Ig3–Ig11) were deleted from the proximal tandem Ig segment of the spring region of titin (IG KO). Exon microarray analysis revealed no adaptations in titin splicing, whereas novel phospho-specific antibodies did not detect changes in titin phosphorylation. Passive myocyte stiffness was increased in the IG KO, and immunoelectron microscopy revealed increased extension of the remaining titin spring segments as the sole likely underlying mechanism. Diastolic stiffness was increased at the tissue and organ levels, with no consistent changes in extracellular matrix composition or extracellular matrix–based passive stiffness, supporting a titin-based mechanism for in vivo diastolic dysfunction. Additionally, IG KO mice have a reduced exercise tolerance, a phenotype often associated with diastolic dysfunction. Conclusions— Increased titin-based passive stiffness is sufficient to cause diastolic dysfunction with exercise intolerance.
Circulation | 2013
Charles S. Chung; Kirk R. Hutchinson; Mei Methawasin; Chandra Saripalli; John E. Smith; Carlos Hidalgo; Xiuju Luo; Siegfried Labeit; Caiying Guo; Henk Granzier
Background— Diastolic dysfunction is a poorly understood but clinically pervasive syndrome that is characterized by increased diastolic stiffness. Titin is the main determinant of cellular passive stiffness. However, the physiological role that the tandem immunoglobulin (Ig) segment of titin plays in stiffness generation and whether shortening this segment is sufficient to cause diastolic dysfunction need to be established. Methods and Results— We generated a mouse model in which 9 Ig-like domains (Ig3–Ig11) were deleted from the proximal tandem Ig segment of the spring region of titin (IG KO). Exon microarray analysis revealed no adaptations in titin splicing, whereas novel phospho-specific antibodies did not detect changes in titin phosphorylation. Passive myocyte stiffness was increased in the IG KO, and immunoelectron microscopy revealed increased extension of the remaining titin spring segments as the sole likely underlying mechanism. Diastolic stiffness was increased at the tissue and organ levels, with no consistent changes in extracellular matrix composition or extracellular matrix–based passive stiffness, supporting a titin-based mechanism for in vivo diastolic dysfunction. Additionally, IG KO mice have a reduced exercise tolerance, a phenotype often associated with diastolic dysfunction. Conclusions— Increased titin-based passive stiffness is sufficient to cause diastolic dysfunction with exercise intolerance.
Journal of Molecular and Cellular Cardiology | 2013
Carlos Hidalgo; Charles S. Chung; Chandra Saripalli; Mei Methawasin; Kirk R. Hutchinson; George Tsaprailis; Siegfried Labeit; Alicia Mattiazzi; Henk Granzier
Titin-based passive stiffness is post-translationally regulated by several kinases that phosphorylate specific spring elements located within titins elastic I-band region. Whether titin is phosphorylated by calcium/calmodulin dependent protein kinase II (CaMKII), an important regulator of cardiac function and disease, has not been addressed. The aim of this work was to determine whether CaMKIIδ, the predominant CaMKII isoform in the heart, phosphorylates titin, and to use phosphorylation assays and mass spectrometry to study which of titins spring elements might be targeted by CaMKIIδ. It was found that CaMKIIδ phosphorylates titin in mouse LV skinned fibers, that the CaMKIIδ sites can be dephosphorylated by protein phosphatase 1 (PP1), and that under baseline conditions, in both intact isolated hearts and skinned myocardium, about half of the CaMKIIδ sites are phosphorylated. Mass spectrometry revealed that both the N2B and PEVK segments are targeted by CaMKIIδ at several conserved serine residues. Whether phosphorylation of titin by CaMKIIδ occurs in vivo, was tested in several conditions using back phosphorylation assays and phospho-specific antibodies to CaMKIIδ sites. Reperfusion following global ischemia increased the phosphorylation level of CaMKIIδ sites on titin and this effect was abolished by the CaMKII inhibitor KN-93. No changes in the phosphorylation level of the PEVK element were found suggesting that the increased phosphorylation level of titin in IR (ischemia reperfusion) might be due to phosphorylation of the N2B element. The findings of these studies show for the first time that titin can be phosphoryalated by CaMKIIδ, both in vitro and in vivo, and that titins molecular spring region that determines diastolic stiffness is a target of CaMKIIδ.
Circulation Research | 2011
Bryan D. Hudson; Carlos Hidalgo; Chandra Saripalli; Henk Granzier
Rationale: Mechanisms underlying diastolic dysfunction need to be better understood. Objective: To study the role of titin in diastolic dysfunction using a mouse model of experimental heart failure induced by transverse aortic constriction. Methods and Results: Eight weeks after transverse aortic constriction surgery, mice were divided into heart failure (HF) and congestive heart failure (CHF) groups. Mechanical studies on skinned left ventricle myocardium measured total and titin-based and extracellular matrix-based passive stiffness. Total passive stiffness was increased in both HF and CHF mice, and this was attributable to increases in both extracellular matrix-based and titin-based passive stiffness, with titin being dominant. Protein expression and titin exon microarray analysis revealed increased expression of the more compliant N2BA isoform at the expense of the stiff N2B isoform in HF and CHF mice. These changes are predicted to lower titin-based stiffness. Because the stiffness of titin is also sensitive to titin phosphorylation by protein kinase A and protein kinase C, back phosphorylation and Western blot assays with novel phospho-specific antibodies were performed. HF and CHF mice showed hyperphosphorylation of protein kinase A sites and the proline glutamate valine lysine (PEVK) S26 protein kinase C sites, but hypophosphorylation of the PEVK S170 protein kinase C site. Protein phosphatase I abolished differences in phosphorylation levels and normalized titin-based passive stiffness levels between control and HF myocardium. Conclusion: Transverse aortic constriction-induced HF results in increased extracellular matrix-based and titin-based passive stiffness. Changes in titin splicing occur, which lower passive stiffness, but this effect is offset by hyperphosphorylation of residues in titin spring elements, particularly of PEVK S26. Thus, complex changes in titin occur that combined are a major factor in the increased passive myocardial stiffness in HF.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Henk Granzier; Kirk R. Hutchinson; Paola Tonino; Mei Methawasin; Frank Li; Rebecca Slater; Mathew M. Bull; Chandra Saripalli; Christopher T. Pappas; Carol C. Gregorio; John E. Smith
Significance Mutations in titin are a major cause of heart failure, yet the functions of large parts of titin are not understood. Here we studied titin’s I-band/A-band junction that has been proposed to be crucial for thick filament length control. We made a mouse in which titin’s IA junction was deleted. Super-resolution microscopy (structured illumination microscopy) revealed that deleting the IA junction increases the strain on titin’s molecular spring elements without altering thick filament length. Single cell biomechanical measurements showed that this increases passive stiffness while functional studies at the whole animal level revealed diastolic dysfunction, exercise intolerance, and modest concentric cardiac hypertrophy—signature features of heart failure with preserved ejection fraction. Our studies support that titin is a promising therapeutic target for treating heart failure. Titin, the largest protein known, forms a giant filament in muscle where it spans the half sarcomere from Z disk to M band. Here we genetically targeted a stretch of 14 immunoglobulin-like and fibronectin type 3 domains that comprises the I-band/A-band (IA) junction and obtained a viable mouse model. Super-resolution optical microscopy (structured illumination microscopy, SIM) and electron microscopy were used to study the thick filament length and titin’s molecular elasticity. SIM showed that the IA junction functionally belongs to the relatively stiff A-band region of titin. The stiffness of A-band titin was found to be high, relative to that of I-band titin (∼40-fold higher) but low, relative to that of the myosin-based thick filament (∼70-fold lower). Sarcomere stretch therefore results in movement of A-band titin with respect to the thick filament backbone, and this might constitute a novel length-sensing mechanism. Findings disproved that titin at the IA junction is crucial for thick filament length control, settling a long-standing hypothesis. SIM also showed that deleting the IA junction moves the attachment point of titin’s spring region away from the Z disk, increasing the strain on titin’s molecular spring elements. Functional studies from the cellular to ex vivo and in vivo left ventricular chamber levels showed that this causes diastolic dysfunction and other symptoms of heart failure with preserved ejection fraction (HFpEF). Thus, our work supports titin’s important roles in diastolic function and disease of the heart.
Circulation | 2016
Mei Methawasin; Joshua Strom; Rebecca Slater; Vanessa Fernandez; Chandra Saripalli; Henk Granzier
Background: Left ventricular (LV) stiffening contributes to heart failure with preserved ejection fraction (HFpEF), a syndrome with no effective treatment options. Increasing the compliance of titin in the heart has become possible recently through inhibition of the splicing factor RNA binding motif-20. Here, we investigated the effects of increasing the compliance of titin in mice with diastolic dysfunction. Methods: Mice in which the RNA recognition motif (RRM) of one of the RNA binding motif-20 alleles was floxed and that expressed the MerCreMer transgene under control of the &agr;MHC promoter (referred to as cRbm20&Dgr;RRM mice) were used. Mice underwent transverse aortic constriction (TAC) surgery and deoxycorticosterone acetate (DOCA) pellet implantation. RRM deletion in adult mice was triggered by injecting raloxifene (cRbm20&Dgr;RRM-raloxifene), with dimethyl sulfoxide (DMSO)–injected mice (cRbm20&Dgr;RRM-DMSO) as the control. Diastolic function was investigated with echocardiography and pressure-volume analysis; passive stiffness was studied in LV muscle strips and isolated cardiac myocytes before and after elimination of titin-based stiffness. Treadmill exercise performance was also studied. Titin isoform expression was evaluated with agarose gels. Results: cRbm20&Dgr;RRM-raloxifene mice expressed large titins in the hearts, called supercompliant titin (N2BAsc), which, within 3 weeks after raloxifene injection, made up ≈45% of total titin. TAC/DOCA cRbm20&Dgr;RRM-DMSO mice developed LV hypertrophy and a marked increase in LV chamber stiffness as shown by both pressure-volume analysis and echocardiography. LV chamber stiffness was normalized in TAC/DOCA cRbm20&Dgr;RRM-raloxifene mice that expressed N2BAsc. Passive stiffness measurements on muscle strips isolated from the LV free wall revealed that extracellular matrix stiffness was equally increased in both groups of TAC/DOCA mice (cRbm20&Dgr;RRM-DMSO and cRbm20&Dgr;RRM-raloxifene). However, titin-based muscle stiffness was reduced in the mice that expressed N2BAsc (TAC/DOCAcRbm20&Dgr;RRM-raloxifene). Exercise testing demonstrated significant improvement in exercise tolerance in TAC/DOCA mice that expressed N2BAsc. Conclusions: Inhibition of the RNA binding motif-20–based titin splicing system upregulates compliant titins, which improves diastolic function and exercise tolerance in the TAC/DOCA model. Titin holds promise as a therapeutic target for heart failure with preserved ejection fraction.
Journal of the American Heart Association | 2014
Silvia Rain; Denielli da Silva Gonçalves Bós; M. Louis Handoko; Nico Westerhof; Ger J.M. Stienen; C. Ottenheijm; Max Goebel; Peter Dorfmüller; Christophe Guignabert; Marc Humbert; Harm-Jan Bogaard; Cris dos Remedios; Chandra Saripalli; Carlos Hidalgo; Henk Granzier; Anton Vonk-Noordegraaf; Jolanda van der Velden; Frances S. de Man
Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2+ handling proteins contribute to RV diastolic dysfunction in PAH.
Journal of Molecular and Cellular Cardiology | 2015
Kirk R. Hutchinson; Chandra Saripalli; Charles S. Chung; Henk Granzier
We investigated the cellular and molecular mechanisms of diastolic dysfunction in pure volume overload induced by aortocaval fistula (ACF) surgery in the mouse. Four weeks of volume overload resulted in significant biventricular hypertrophy; protein expression analysis in left ventricular (LV) tissue showed a marked decrease in titins N2BA/N2B ratio with no change in phosphorylation of titins spring region. Titin-based passive tensions were significantly increased; a result of the decreased N2BA/N2B ratio. Conscious echocardiography in ACF mice revealed eccentric remodeling and pressure volume analysis revealed systolic dysfunction: reductions in ejection fraction (EF), +dP/dt, and the slope of the end-systolic pressure volume relationships (ESPVR). ACF mice also had diastolic dysfunction: increased LV end-diastolic pressure and reduced relaxation rates. Additionally, a decrease in the slope of the end diastolic pressure volume relationship (EDPVR) was found. However, correcting for altered geometry of the LV normalized the change in EDPVR and revealed, in line with our skinned muscle data, increased myocardial stiffness in vivo. ACF mice also had increased expression of the signaling proteins FHL-1, FHL-2, and CARP that bind to titins spring region suggesting that titin stiffening is important to the volume overload phenotype. To test this we investigated the effect of volume overload in the RBM20 heterozygous (HET) mouse model, which exhibits reduced titin stiffness. It was found that LV hypertrophy was attenuated and that LV eccentricity was exacerbated. We propose that pure volume overload induces an increase in titin stiffness that is beneficial and limits eccentric remodeling.