Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chandrashekhara Manithody is active.

Publication


Featured researches published by Chandrashekhara Manithody.


Journal of Biological Chemistry | 2007

Engineering a Disulfide Bond to Stabilize the Calcium-binding Loop of Activated Protein C Eliminates Its Anticoagulant but Not Its Protective Signaling Properties

Jong-Sup Bae; Likui Yang; Chandrashekhara Manithody; Alireza R. Rezaie

In addition to an anticoagulant activity, activated protein C (APC) also exhibits anti-inflammatory and cytoprotective properties. These properties may contribute to the beneficial effect of APC in treating severe sepsis patients. A higher incidence of bleeding because of its anticoagulant function has been found to be a major drawback of APC as an effective anti-inflammatory drug. In this study, we have prepared a protein C variant in which an engineered disulfide bond between two β-sheets stabilized the functionally critical Ca2+-binding 70-80 loop of the molecule. The 70-80 loop of this mutant no longer bound Ca2+, and the activation of the mutant by thrombin was enhanced 60-80-fold independently of thrombomodulin. The anticoagulant activity of the activated protein C mutant was nearly eliminated as determined by a plasma-based clotting assay. However, the endothelial protein C receptor- and protease-activated receptor-1-dependent protective signaling properties of the mutant were minimally altered as determined by staurosporine-induced endothelial cell apoptosis, thrombin-induced endothelial cell permeability, and tumor necrosis-α-mediated neutrophil adhesion and migration assays. These results suggest that the mutant lost its ability to interact with the procoagulant cofactors but not with the protective signaling molecules; thus this mutant provides an important tool for in vivo studies to examine the role of anticoagulant versus anti-inflammatory function of activated protein C.


Journal of Biological Chemistry | 2007

Identification of a specific exosite on activated protein C for interaction with protease-activated receptor 1.

Likui Yang; Jong-Sup Bae; Chandrashekhara Manithody; Alireza R. Rezaie

Activated protein C (APC) is a vitamin K-dependent plasma serine protease which down-regulates the clotting cascade by inactivating procoagulant factors Va and VIIIa by limited proteolysis. In addition to its anticoagulant effect, APC also exhibits cytoprotective and antiinflammatory activity through the endothelial protein C receptor-dependent cleavage of protease activated receptor 1 (PAR-1) on endothelial cells. Recent mutagenesis data have indicated that the basic residues of two surface loops including those on 39 and the Ca2+-binding 70–80 loops constitute interactive sites for both factors Va and VIIIa, thereby mediating the interaction of APC specifically with these procoagulant cofactors. The basic residues of both loops have been discovered to be dispensable for the interaction of APC with PAR-1. It is not known if a similar exosite-dependent interaction contributes to the specificity of APC recognition of PAR-1 on endothelial cells. In this study, we have identified two acidic residues on helix-162 (Glu-167 and Glu-170) on the protease domain of APC which are required for the protease interaction with PAR-1, but not for its interaction with the procoagulant cofactors. Thus, the substitution of either Glu-167 or Glu-170 with Ala eliminated the cytoprotective signaling properties of APC without affecting its anticoagulant activity. These mutants provide useful tools for initiating in vivo studies to understand the extent to which the anticoagulant versus antiinflammatory activity of APC contributes to its beneficial effect in treating severe sepsis.


Blood | 2014

Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor

Peyman Dinarvand; Seyed Mahdi Hassanian; Shabir H. Qureshi; Chandrashekhara Manithody; Joel C. Eissenberg; Likui Yang; Alireza R. Rezaie

The extracellular nuclear proteins, histone H4 (H4) and high mobility group box 1 (HMGB1), released by injured cells during the activation of inflammation and coagulation pathways provoke potent inflammatory responses through interaction with pathogen-related pattern recognition receptors (ie, Toll-like receptors [TLRs] and receptor for advanced glycation end products [RAGE]) present on vascular and innate immune cells. Inorganic polyphosphate (polyP) has emerged as a key modulator of coagulation and inflammation. Here, we demonstrate that polyP binds to both H4 and HMGB1 with high affinity, thereby dramatically potentiating their proinflammatory properties in cellular and in vivo models. By using small interfering RNA knockdowns, pharmacologic inhibitors and extracellular domains of the receptors TLR2, TLR4, RAGE, and P2Y1 as competitive inhibitors, we demonstrate that polyP amplifies H4- and HMGB1-mediated inflammatory signaling in human umbilical vein endothelial cells specifically through interaction with the RAGE and P2Y1 receptors, thereby eliciting intracellular Ca(2+) release. Finally, we demonstrate that the natural anticoagulant protease, activated protein C, potently inhibits polyP-mediated proinflammatory effects of both nuclear proteins in cellular and in vivo systems.


Journal of Biological Chemistry | 2008

Protein Z-dependent Protease Inhibitor Binds to the C-terminal Domain of Protein Z

Alireza R. Rezaie; Jong-Sup Bae; Chandrashekhara Manithody; Shabir H. Qureshi; Likui Yang

Protein Z (PZ) is a multidomain vitamin K-dependent plasma protein that functions as a cofactor to promote the inactivation of factor Xa (fXa) by PZ-dependent protease inhibitor (ZPI) by three orders of magnitude. To understand the mechanism by which PZ improves the reactivity of fXa with ZPI, we expressed wild-type PZ, PZ lacking the γ-carboxyglutamic acid domain (GD-PZ), and a chimeric PZ mutant in which both Gla and EGF-like domains of the molecule were substituted with identical domains of fXa. The ZPI binding and the cofactor function of the PZ derivatives were characterized in both binding and kinetic assays. The binding assay indicated that all PZ derivatives interact with ZPI with a similar dissociation constant (KD) of ∼7 nm. However, the apparent KD for the chimeric PZ-mediated ZPI inhibition of fXa was elevated 6-fold on PC/PS vesicles and its capacity to function as a cofactor to accelerate the ZPI inhibition of fXa was also decreased 6-fold. The cofactor activity of GD-PZ was dramatically impaired; however, the deletion mutant exhibited a normal cofactor function in solution. A chimeric activated protein C mutant containing the Gla domain of fXa was susceptible to inhibition by ZPI in the presence of PZ. These results suggest that: (i) the ZPI interactive site of PZ is located within the C-terminal domain of the cofactor and (ii) a specific interaction between the Gla domains of PZ and fXa contributes ∼6-fold to the acceleration of the ZPI inhibition of fXa on phospholipid membranes.


Journal of Biological Chemistry | 2005

Identification of Factor Xa Residues Critical for Interaction with Protein Z-dependent Protease Inhibitor: Both Active-site and Exosite Interactions Are Required for Inhibition

Alireza R. Rezaie; Chandrashekhara Manithody; Likui Yang

Protein Z-dependent protease inhibitor (ZPI) is a plasma serpin, which can rapidly inactivate factor Xa (fXa) in the presence of protein Z (PZ), negatively charged phospholipids, and Ca2+. To investigate the mechanism by which ZPI inactivates fXa, we expressed the serpin in mammalian cells and characterized its reactivity with both wild-type and selected mutants of fXa that 1) contained substitutions in the autolysis loop and the heparin binding exosite, 2) lacked the first EGF-like domain (fXa-des-EGF-1), or 3) contained the Gla domain of protein C (fXa/PC-Gla). Inhibition studies in both the presence and absence of PZ revealed that Arg-143, Lys-147, and Arg-154 of the autolysis loop and Lys-96, Lys-169, and Lys-236 of the heparin binding exosite are required for recognition of ZPI, with Arg-143 being essential for the interaction. Similar studies with fXa-des-EGF-1 and fXa/PC-Gla suggested that protein-protein interaction with either the Gla or the EGF-1 domain may not play a dominant role in the PZ-dependent recognition of fXa by the serpin on phospholipid vesicles. Further studies showed that an inactive Ser-195 to Ala mutant of fXa effectively competes with wild-type fXa for binding to the non-serpin inhibitors tissue factor pathway inhibitor and recombinant tick anticoagulant peptide, but does not compete for binding to ZPI. This suggests that the catalytic residue of fXa is required for interaction with ZPI.


Journal of Thrombosis and Haemostasis | 2012

Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart

Robert Costa; Alex Morrison; Jingying Wang; Chandrashekhara Manithody; Ji Li; Alireza R. Rezaie

Summary.  Background:  Modulation of energy substrate metabolism may constitute a novel therapeutic intervention against ischemia/reperfusion (I/R) injury. AMP‐activated protein kinase (AMPK) has emerged as a key regulator of favorable metabolic signaling pathways in response to myocardial ischemia. Recently, we demonstrated that activated protein C (APC) is cardioprotective against ischemia/reperfusion (I/R) injury by augmenting AMPK signaling.


Protein Science | 2004

Zymogenic and enzymatic properties of the 70-80 loop mutants of factor X/Xa.

Lin Chen; Chandrashekhara Manithody; Likui Yang; Alireza R. Rezaie

The Ca2+ binding 70–80 loop of factor X (fX) contains one basic (Arg71) and three acidic (Glu74, Glu76, and Glu77) residues whose contributions to the zymogenic and enzymatic properties of the protein have not been evaluated. We prepared four Ala substitution mutants of fX (R71A, E74A, E76A, and E77A) and characterized their activation kinetics by the factor VIIa and factor IXa in both the absence and presence of cofactors. Factor VIIa exhibited normal activity toward E74A and E76A and less than a twofold impaired activity toward R71A and E77A in both the absence and presence of tissue factor. Similarly, factor IXa in the absence of factor VIIIa exhibited normal activity toward both E74A and E76A; however, its activity toward R71A and E77A was impaired approximately two‐ to threefold. In the presence of factor VIIIa, factor IX activated all mutants with approximately two‐ to fivefold impaired catalytic efficiency. In contrast to changes in their zymogenic properties, all mutant enzymes exhibited normal affinities for factor Va, and catalyzed the conversion of prothrombin to thrombin with normal catalytic efficiencies. However, further studies revealed that the affinity of mutant enzymes for interaction with metal ions Na+ and Ca2+ was impaired. These results suggest that although charged residues of the 70–80 loop play an insignificant role in fX recognition by the factor VIIa‐tissue factor complex, they are critical for the substrate recognition by factor IXa in the intrinsic Xase complex. The results further suggest that mutant residues do not play a specific role in the catalytic function of fXa in the prothrombinase complex.


Journal of Thrombosis and Haemostasis | 2013

Antithrombin is protective against myocardial ischemia and reperfusion injury

Jinli Wang; Yanqing Wang; Junjie Gao; C. Tong; Chandrashekhara Manithody; Ji Li; A. R. Rezaie

Antithrombin (AT) is a plasma serpin inhibitor that regulates the proteolytic activity of procoagulant proteases of the clotting cascade. In addition to its anticoagulant activity, AT also possesses potent anti‐inflammatory properties.


Thrombosis and Haemostasis | 2014

Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury

Yina Ma; Jinli Wang; Junjie Gao; Hui Yang; Yanqing Wang; Chandrashekhara Manithody; Ji Li; Alireza R. Rezaie

Antithrombin (AT) is a protein of the serpin superfamily involved in regulation of the proteolytic activity of the serine proteases of the coagulation system. AT is known to exhibit anti-inflammatory and cardioprotective properties when it binds to heparan sulfate proteoglycans (HSPGs) on vascular cells. AMP-activated protein kinase (AMPK) plays an important cardioprotective role during myocardial ischaemia and reperfusion (I/R). To determine whether the cardioprotective signaling function of AT is mediated through the AMPK pathway, we evaluated the cardioprotective activities of wild-type AT and its two derivatives, one having high affinity and the other no affinity for heparin, in an acute I/R injury model in C57BL/6J mice in which the left anterior descending coronary artery was occluded. The serpin derivatives were given 5 minutes before reperfusion. The results showed that AT-WT can activate AMPK in both in vivo and ex vivo conditions. Blocking AMPK activity abolished the cardioprotective function of AT against I/R injury. The AT derivative having high affinity for heparin was more effective in activating AMPK and in limiting infraction, but the derivative lacking affinity for heparin was inactive in eliciting AMPK-dependent cardioprotective activity. Activation of AMPK by AT inhibited the inflammatory c-Jun N-terminal protein kinase (JNK) pathway during I/R. Further studies revealed that the AMPK activity induced by AT also modulates cardiac substrate metabolism by increasing glucose oxidation but inhibiting fatty acid oxidation during I/R. These results suggest that AT binds to HSPGs on heart tissues to invoke a cardioprotective function by triggering cardiac AMPK activation, thereby attenuating JNK inflammatory signalling pathways and modulating substrate metabolism during I/R.


Journal of Biological Chemistry | 2003

Thrombomodulin enhances the reactivity of thrombin with protein C inhibitor by providing both a binding site for the serpin and allosterically modulating the activity of thrombin.

Likui Yang; Chandrashekhara Manithody; Timothy D. Walston; Scott T. Cooper; Alireza R. Rezaie

Thrombomodulin (TM), or its epidermal growth factor-like domains 456 (TM456), enhances the catalytic efficiency of thrombin toward both protein C and protein C inhibitor (PCI) by 2–3 orders of magnitude. Structural and mutagenesis data have indicated that the interaction of basic residues of the heparin-binding exosite of protein C with the acidic residues of TM4 is partially responsible for the efficient activation of the substrate by the thrombin-TM456 complex. Similar to protein C, PCI has a basic exosite (H-helix) that constitutes the heparin-binding site of the serpin. To determine whether TM accelerates the reactivity of thrombin with PCI by providing a binding site for the H-helix of the serpin, an antithrombin (AT) mutant was constructed in which the H-helix of the serpin was replaced with the same region of PCI (AT-PCIH-helix). Unlike PCI, the H-helix of AT is negatively charged. It was discovered that TM456 slightly (<2-fold) impaired the reactivity of AT with thrombin; however, it enhanced the reactivity of AT-PCIH-helix with the protease by an order of magnitude. Further studies revealed that the substitution of Arg35 of thrombin with an Ala also resulted in an order of magnitude enhancement in reactivity of the protease with both PCI and AT-PCIH-helix independent of TM. We conclude that TM enhances the reactivity of PCI with thrombin by providing both a binding site for the serpin and a conformational modulation of the extended binding pocket of thrombin.

Collaboration


Dive into the Chandrashekhara Manithody's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Likui Yang

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Li

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar

Amber Price

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Blomenkamp

Cardinal Glennon Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge