Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chandreswar Mahata is active.

Publication


Featured researches published by Chandreswar Mahata.


Advanced Materials | 2014

Switchable Water‐Adhesive, Superhydrophobic Palladium‐Layered Silicon Nanowires Potentiate the Angiogenic Efficacy of Human Stem Cell Spheroids

Jungmok Seo; Jung Seung Lee; Kihong Lee; Dayeong Kim; Kisuk Yang; Sera Shin; Chandreswar Mahata; Hwae Bong Jung; Wooyoung Lee; Seung Woo Cho; Taeyoon Lee

A switchable water-adhesive, super-hydrophobic nanowire surface is developed for the formation of functional stem cell spheroids. The sizes of hADSC spheroids are readily controllable on the surface. Our surface increases cell-cell and cell-matrix interaction, which improves viability and paracrine secretion of the spheroids. Accordingly, the hADSC spheroids produced on the surface exhibit significantly enhanced angiogenic efficacy.


Nanoscale | 2014

Graphene as an atomically thin barrier to Cu diffusion into Si

Juree Hong; Sanggeun Lee; Seulah Lee; Heetak Han; Chandreswar Mahata; Han Wool Yeon; Bon-Woong Koo; Seong Il Kim; Taewook Nam; Kisik Byun; Byung Wook Min; Young Woon Kim; Hyungjun Kim; Young-Chang Joo; Taeyoon Lee

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 μm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 μm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5-10 nm. The thermal stability of these barriers is investigated after annealing Cu/small-grain SLG/Si, Cu/large-grain SLG/Si, and Cu/MLG/Si stacks at different temperatures ranging from 500 to 900 °C. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses confirm that the small-grain SLG barrier is stable after annealing up to 700 °C and that the large-grain SLG and MLG barriers are stable after annealing at 900 °C for 30 min under a mixed Ar and H2 gas atmosphere. The time-dependent dielectric breakdown (TDDB) test is used to evaluate graphene as a Cu diffusion barrier under real device operating conditions, revealing that both large-grain SLG and MLG have excellent barrier performance, while small-grain SLG fails quickly. Notably, the large-grain SLG acts as a better diffusion barrier than the thicker MLG in the TDDB test, indicating that the grain boundary density of a graphene diffusion barrier is more important than its thickness. The near-zero-thickness SLG serves as a promising Cu diffusion barrier for advanced metallization.


ACS Applied Materials & Interfaces | 2014

Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates.

Jaehong Lee; Jungmok Seo; Dayeong Kim; Sera Shin; Sanggeun Lee; Chandreswar Mahata; Hyo Sung Lee; Byung Wook Min; Taeyoon Lee

The fabrication of well-ordered metal nanoparticle structures onto a desired substrate can be effectively applied to several applications. In this work, well-ordered Ag nanoparticle line arrays were printed on the desired substrate without the use of glue materials. The success of the method relies on the assembly of Ag nanoparticles on the anisotropic buckling templates and a special transfer process where a small amount of water rather than glue materials is employed. The anisotropic buckling templates can be made to have various wavelengths by changing the degree of prestrain in the fabrication step. Ag nanoparticles assembled in the trough of the templates via dip coating were successfully transferred to a flat substrate which has hydrophilic surface due to capillary forces of water. The widths of the fabricated Ag nanoparticle line arrays were modulated according to the wavelengths of the templates. As a potential application, the Ag nanoparticle line arrays were used as SERS substrates for various probing molecules, and an excellent surface-enhanced Raman spectroscopy (SERS) performance was achieved with a detection limit of 10(-12) M for Rhodamine 6G.


Nanomaterials | 2015

Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

Vishakha Kaushik; Jaehong Lee; Juree Hong; Seulah Lee; Sanggeun Lee; Jungmok Seo; Chandreswar Mahata; Taeyoon Lee

Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.


ACS Applied Materials & Interfaces | 2013

Comparative Study of Atomic-Layer-Deposited Stacked (HfO2/Al2O3) and Nanolaminated (HfAlOx) Dielectrics on In0.53Ga0.47As

Chandreswar Mahata; Young-Chul Byun; Chee-Hong An; Sungho Choi; Youngseo An; Hyoungsub Kim

The high-k gate dielectric structures in stacked (HfO2/Al2O3) and nanolaminated (HfAlOx) forms with a similar apparent accumulation capacitance were atomic-layer-deposited on n-type In0.53Ga0.47As substrates, and their electrical properties were investigated in comparison with a single-layered HfO2 film. Al-oxide interface passivation in both forms proved to be effective in preventing a significant In incorporation in the high-k film and reducing the interface state density. The measured valence band spectra in combination with the reflection electron energy loss spectra were used to extract the energy band parameters of various dielectric structures on In0.53Ga0.47As. A further decrease in the interface state density was achieved in the stacked structure than in the nanolaminated structure. However, in terms of the other electrical properties, the nanolaminated sample exhibited better characteristics than the stacked sample, with a smaller border trap density and lower leakage current under substrate injection conditions with and without voltage stressing.


Journal of Physics D | 2013

Atomic-layer-deposited (HfO2)1−x(Al2O3)x nanolaminate films on InP with different Al2O3 contents

Chee-Hong An; Chandreswar Mahata; Young-Chul Byun; Hyoungsub Kim

The effect of Al2O3 mixing in HfO2 on the electrical properties was studied on InP substrates using nanolaminate films grown by atomic layer deposition. The In out-diffusion and the subsequent In-related oxide phase generation were effectively suppressed by introducing more Al2O3 to the HfO2 film. Although the decrease in the maximum capacitance was taken into consideration, more Al2O3 introduction significantly improved the dielectric properties. The magnitude of the capacitance–voltage frequency dispersion was decreased with the reduced border trap and interface state densities. Additionally, the leakage current characteristics were improved, including the voltage-stress-dependent reliability.


Journal of Materials Chemistry C | 2015

The impact of atomic layer deposited SiO2 passivation for high-k Ta1−xZrxO on the InP substrate

Chandreswar Mahata; Il Kwon Oh; Chang Mo Yoon; Chang Wan Lee; Jungmok Seo; Hassan Algadi; Mi Hyang Sheen; Young Woon Kim; Hyungjun Kim; Taeyoon Lee

Metal–oxide-semiconductor (MOS) capacitors with an amorphous Ta1−xZrxO composite gate dielectric film and a SiO2 passivation layer were fabricated on an indium phosphide (InP) substrate. To investigate the impact of the passivation layer, the interfacial chemical, physical and electrical properties of the Ta1−xZrxO/InP and Ta1−xZrxO/SiO2/InP MOS structures were studied in detail. Electrical conductivity measurements combined with chemical bonding analysis using X-ray photoelectron spectroscopy (XPS) and electron dispersive spectroscopy (EDS) were conducted in order to evaluate the suitability of a Ta1−xZrxO alloy as a gate dielectric film for an InP substrate. XPS results showed that the Ta1−xZrxO film retained its insulating characteristics and was thermally stable even after annealing at 500 °C. However, Fermi-level pinning and significant diffusion of indium through the Ta1−xZrxO were observed. The diffusion of In was remarkably reduced after introducing the SiO2 passivation layer, which resulted in an overall reduction in interfacial layer thickness. Parallel conductance contour measurements showed that the SiO2 passivation layer resulted in unpinning of the Fermi-level. The introduction of a SiO2 passivation layer with the Ta1−xZrxO composite gate dielectric film was found to provide remarkably improved dielectric performance, which was mainly attributed to reduced In diffusion and the passivation of interfacial and bulk dielectric defects.


RSC Advances | 2014

Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties†

Yongwon Chung; Sanggeun Lee; Chandreswar Mahata; Jungmok Seo; Seung Min Lim; Min Su Jeong; Hanearl Jung; Young-Chang Joo; Young Bae Park; Hyungjun Kim; Taeyoon Lee

In this work, we have demonstrated chemically coupled (3-aminopropyl)trimethoxysilane (APTMS) and 3-mercaptopropionic acid (MPA) self-assembled monolayers (SAMs) to enhance the diffusion barrier properties against copper (Cu) as well as the adhesion properties towards SiO2 and Cu electrode. The coupled-SAM (C-SAM) can attach to both Cu and SiO2 strongly which is expected to enhance both the diffusion barrier and adhesion properties. A carbodiimide-mediated amidation process was used to link NH2 terminated APTMS to COOH terminated MPA. The resulting C-SAM shows a low root-mean-square roughness of 0.44 nm and a thickness of 2 nm. Time-dependent dielectric breakdown (TDDB) tests are used to evaluate APTMS and C-SAM for their ability to block Cu ion diffusion. The average time-to-failure (TTF) is enhanced over 4 times after the MPA attachment, and is even comparable to TaN barriers. Capacitance–voltage (C–V) measurements are also conducted to monitor Cu ion diffusion. Negligible change in the flatband voltage and C–V curve is observed during the constant voltage stress C–V measurement. Enhancement of the adhesion properties are measured using four-point bending tests and shows that the C-SAM has a 33% enhancement in the adhesion properties between SiO2 and Cu compared to APTMS. The C-SAM shows potential as an ultra-thin Cu diffusion barrier which also has good adhesion properties.


RSC Advances | 2015

Electrostatically-induced trajectory switching system on a multi-inlet-multi-outlet superhydrophobic droplet guiding track

Soonil Lee; Seulah Lee; Dayeong Kim; Jungmok Seo; Chandreswar Mahata; Hyunseok Hwang; Hassan Algadi; S.A. Al-Sayari; Youngcheol Chae; Taeyoon Lee

A multi-inlet-multi-outlet (MIMO) superhydrophobic droplet guiding track was demonstrated for water droplet manipulation using an electrostatic force-induced trajectory switching system. Without applying an external electrostatic field, the water droplet rolled along the superhydrophobic guiding track due to its extreme water repellent properties and gravitational force. By applying a DC bias to a capacitor above the guiding track, the trajectory of the water droplet can be easily controlled by the electrostatic attraction. Electrostatically-induced trajectory switching was successfully achieved when the electrostatic and gravitational forces exerted on the water droplet were properly balanced. On a MIMO superhydrophobic droplet guiding track with three inlets and four outlets, the water droplet was guided along the intended trajectory.


Journal of Physics D | 2015

Electrical and band structural analyses of Ti1-xAlxOyfilms grown by atomic layer deposition on p-type GaAs

Youngseo An; Chandreswar Mahata; Changmin Lee; Sungho Choi; Young Chul Byun; Yu Seon Kang; Taeyoon Lee; Jiyoung Kim; Mann-Ho Cho; Hyoungsub Kim

Amorphous Ti1−x Al x O y films in the Ti-oxide-rich regime (x < 0.5) were deposited on p-type GaAs via atomic layer deposition with titanium isopropoxide, trimethylaluminum, and H2O precursor chemistry. The electrical properties and energy band alignments were examined for the resulting materials with their underlying substrates, and significant frequency dispersion was observed in the accumulation region of the Ti-oxide-rich Ti1−x Al x O y films. Although a further reduction in the frequency dispersion and leakage current (under gate electron injection) could be somewhat achieved through a greater addition of Al-oxide in the Ti1−x Al x O y film, the simultaneous decrease in the dielectric constant proved problematic in finding an optimal composition for application as a gate dielectric on GaAs. The spectroscopic band alignment measurements of the Ti-oxide-rich Ti1−x Al x O y films indicated that the band gaps had a rather slow increase with the addition of Al-oxide, which was primarily compensated for by an increase in the valance band offset, while a nearly-constant conduction band offset with a negative electron barrier height was maintained.

Collaboration


Dive into the Chandreswar Mahata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jungmok Seo

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sungho Choi

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Youngseo An

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge