Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Chandrima Shaha.
Philosophical Transactions of the Royal Society B | 2010
Chandrima Shaha; Rakshamani Tripathi; Durga Prasad Mishra
Cellular apoptosis appears to be a constant feature in the adult testis and during early development. This is essential because mammalian spermatogenesis is a complex process that requires precise homeostasis of different cell types. This review discusses the latest information available on male germ cell apoptosis induced by hormones, toxins and temperature in the context of the type of apoptotic pathway either the intrinsic or the extrinsic that may be used under a variety of stimuli. The review also discusses the importance of mechanisms pertaining to cellular apoptosis during testicular development, which is independent of exogenous stimuli. Since instances of germ cell carcinoma have increased over the past few decades, the current status of research on apoptotic pathways in teratocarcinoma cells is included. One other important aspect that is covered in this review is microRNA-mediated control of germ cell apoptosis, a field of research that is going to see intense activity in near future. Since knockout models of various kinds have been used to study many aspects of germ cell development, a comprehensive summary of literature on knockout mice used in reproduction studies is also provided.
Biochemical Pharmacology | 2010
Kaushik Bhattacharya; Suman Kumar Samanta; Rakshamani Tripathi; Asish Mallick; Sarmila Chandra; Bikas Chandra Pal; Chandrima Shaha; Chitra Mandal
Apo-1 (Fas/CD95), a cell surface receptor, triggers apoptosis after binding to its physiological ligand, Apo-1L (FasL/CD95L). This study reports that mahanine, purified from the leaves of Murraya koenigii, has a dose- and time-dependent anti-proliferative activity in acute lymphoid (MOLT-3) and chronic myeloid (K562) leukemic cell lines and in the primary cells of leukemic and myeloid patients, with minimal effect on normal immune cells including CD34(+) cells. Leukemic cells underwent phosphatidylserine externalization and DNA fragmentation, indicating mahanine-induced apoptosis. An increase in reactive oxygen species suggests that the mahanine-induced apoptosis was mediated by oxidative stress. A significant drop in the Bcl2/Bax ratio, the loss of mitochondrial transmembrane potential as well as cytochrome c release from the mitochondria to the cytosol suggested involvement of the mitochondrial pathway of apoptosis. Cytochrome c release was followed by the activation of caspase-9, caspase-3 and caspase-7, and cleavage of PARP in both MOLT-3 and K562 cells. In MOLT-3 cells, formation of the Fas-FasL-FADD-caspase-8 heterotetramer occurred, leading to the cleavage of Bid to its truncated form, which consequently resulted in formation of the mitochondrial transmembrane pore. The incubation of MOLT-3 cells with mahanine in the presence of caspase-8 inhibitor or FasL-neutralizing NOK-2 antibody resulted in the decrease of mahanine-induced cell death. Mahanine was also a potent inhibitor of K562 xenograft growth, which was evident in an athymic nude mice model. In summary, these results provide evidence for involvement of the death receptor-mediated extrinsic pathway of apoptosis in the mahanine-induced anticancer activity in MOLT-3 cells, but not in K562 cells, which are deficient in Fas/FasL.
Journal of Biological Chemistry | 2006
Durga Prasad Mishra; Rajarshi Pal; Chandrima Shaha
Bcl-x exists in two isoforms, the anti-apoptotic form Bcl-xL and the proapoptotic form Bcl-xS. The critical balance between the two forms appears to be important for cell survival; however, it is still not clear exactly how the vital balance is maintained. Using an in vitro spermatogenic cell apoptosis model, this study provides a new insight into the possible role of Ca2+ in regulating the Bcl-xS and Bcl-xL expression. 2,5-Hexanedione, a metabolite of the common industrial solvent n-hexane, caused a significant increase in reactive oxygen species followed by an enhancement of intracellular Ca2+ through the T-type Ca2+ channels. Consequent to the above changes, expression of Bcl-xS increased with a concomitant drop in Bcl-xL expression, thus altering the ratio of the two proteins. Impediment of Ca2+ influx by using a T-type Ca2+ channel blocker pimozide resulted in a decrease in Bcl-xS and an increase in Bcl-xL expression. This caused prevention of mitochondrial potential loss, reduction of caspase-3 activity, inhibition of DNA fragmentation, and increase in cell survival. Alternatively, Ca2+ ionophores caused an increase of Bcl-xS encoding isoform over the Bcl-xL-encoding isoform. Therefore, this study proposes a role for Ca2+ in regulation of Bcl-xS and Bcl-xL expression and ultimately cell fate.
Molecular Cancer Therapeutics | 2011
Rakshamani Tripathi; Tanmoy Samadder; Sarika Gupta; Avadhesha Surolia; Chandrima Shaha
Use of chemotherapeutic drug cisplatin is limited because of its toxicity. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin to reduce its effective treatment dose. This study evaluates the potential of fisetin, a flavonoid, to increase cisplatin cytotoxicity in human embryonal carcinoma NT2/D1 cells. Addition of fisetin to cisplatin enhanced cisplatin cytoxicity in vitro at four times lower dose than that required by cisplatin monotherapy for similar cytotoxic effects. Cisplatin, fisetin monotherapy, and addition of fisetin to cisplatin in a combination increased FasL expression. Cisplatin and fisetin as single agents activated caspases-8 and -3 and caspases-9 and -7, respectively, whereas combination treatment activated all 4 caspases. Increases in p53 and p21 and decreases in cyclin B1 and survivin occurred, all effects being more exaggerated with the combination. Fisetin, with or without cisplatin, increased expression of proapoptotic protein Bak and induced its mitochondrial oligomerization. Bid truncation and mitochondrial translocation of Bid and p53 was induced by fisetin in the presence or absence of cisplatin. Downregulation of p53 by short hairpin RNA during drug treatment decreased p21 levels but caused survivin increase, thus reducing cell death. Upstream to p53, inhibition of p38 phosphorylation reduced p53 phosphorylation and cell death. In a NT2/D1 mouse xenograft model, combination therapy was most effective in reducing tumor size. In summary, findings of this study suggest that addition of fisetin to cisplatin activates both the mitochondrial and the cell death receptor pathway and could be a promising regimen for the elimination of embryonal carcinoma cells. Mol Cancer Ther; 10(2); 255–68. ©2011 AACR.
Advances in Experimental Medicine and Biology | 2009
Chandrima Shaha
For many years androgens were thought to be the primary hormones required for proper functioning of the male reproductive system, and testes were shown to be the major producers of the hormone. In the 1970s it was recognized that in addition to androgens testes were also a source of estrogens, and the intratesticular concentration of estrogens was higher than levels present in the serum of females of reproductive age1,2. Since then there has been an interest in the study of the role of estrogens in the male. However, in recent years a great interest has been regenerated to decipher the role of estrogens in the control of male fertility because of various developments. For example, discovery of the estrogen receptor β (ERs) in the male3 was an important development, and the evidence emerging from mice with targeted disruption of estrogen receptors showing defects in male fertility4 was another provocative evidence of the importance of estrogens in male reproduction. In addition, the description of reduction in sperm counts and increase in the incidence of testicular tumors in men to which environmental estrogens were causally linked5 were also important observations on pathology-inducing effects of estrogens. It is now established that estrogens are involved in numerous physiological processes in the male, for example, bone turnover, behavior and the cardiovascular system, but controversy exists as to whether male fertility over the past five decades has truly shown a decline6 due to the relatively low levels of estrogens in the environment than humans are exposed to7. As a result of this renewed interest, the role of estrogens in male reproductive physiology is rapidly being redefined. It is therefore pertinent that a comprehensive evaluation of the data on the role of estrogens in the male is made.
Journal of Immunology | 2007
Manikandan Subramanian; Chandrima Shaha
Estrogen is a known immunomodulator with pleiotropic effects on macrophage function that partly accounts for the gender bias observed in numerous autoimmune, cardiovascular, and neurodegenerative disorders. The effect of estrogen on the survival of human macrophages is largely unknown, and in this study we demonstrate that 17β-estradiol (E2) provokes a death response in human THP-1 macrophages by initiating Bax translocation from cytosol to the mitochondria; however, a concomitant up-regulation of Bcl-2 creates a Bax to Bcl-2 ratio favorable for Bcl-2, thus ensuring cell survival. Both Bcl-2 up-regulation and Bax translocation are estrogen receptor-dependent events; however, Bcl-2 augmentation but not Bax translocation is dependent on Ca2+ increase, activation of protein kinase C, and ERK phosphorylation. This estrogen-induced Bcl-2 increase is crucial for the survival of THP-1 macrophages as well as that of human peripheral blood monocyte-derived macrophages, which is evident from E2-induced cell death under small interfering RNA-mediated Bcl-2 knockdown conditions. Hence, this study demonstrates that E2-induced Bcl-2 up-regulation is a homeostatic survival mechanism necessary for the manifestation of immunomodulatory effect of estrogen on human macrophages.
PLOS ONE | 2011
Smriti Verma; Ashish J. Mehta; Chandrima Shaha
Background Cytochrome P450s (CYP450s) are hemoproteins catalysing diverse biochemical reactions important for metabolism of xenobiotics and synthesis of physiologically important compounds such as sterols. Therefore, they are functionally important for survival of invading pathogens. One such opportunistic pathogen Leishmania donovani causes visceral leishmaniasis worldwide, which is an important public health problem due to significant disease burden. The parasite genome database, Gene DB, annotates 3 CYP450s in Leishmania, however, the functional role of cytochrome P450 enzymes in Leishmania spp. remains elusive. Methodology/Principal Findings A CYP450-like gene cloned from Leishmania donovani was identified as a novel CYP450, the CYP5122A1. Upon co-localization with organelle specific markers, CYP5122A1 distribution was shown to be localized in the promastigote ER, mitochondria and the glycosomes. Replacement of one allele of CYP5122A1 with either neomycin or hygromycin gene by homologous recombination in Leishmania promastigotes induced substantial reduction of CYP5122A1 expression. These parasites showed impaired growth, lower mitochondrial Ca2+ and membrane potential resulting in low ATP generation. Also, these parasites were less infective in vitro and in vivo than their wild-type counterparts as assessed by incubation of Leishmania promastigotes with macrophages in vitro as well as through administration of parasites into hamsters. The HKOs were more susceptible to drugs like miltefosine and antimony, but showed reduced sensitivity to amphotericin B. Removal of two alleles of CYP5122A1 did not allow the parasites to survive. The mutant parasites showed 3.5 times lower ergosterol level as compared to the wild-type parasites when estimated by Gas chromatography/mass spectrometry. Complementation of CYP5122A1 through episomal expression of protein by using pXG-GFP+2 vector partially rescued CYP5122A1 expression and restored ergosterol levels by 1.8 times. Phenotype reversal included restored growth pattern and lesser drug susceptibility. Conclusions/Significance In summary, this study establishes CYP5122A1 as an important molecule linked to processes like cell growth, infection and ergosterol biosynthesis in Leishmania donovani.
Journal of Cellular and Molecular Medicine | 2009
Manikandan Subramanian; Chandrima Shaha
Human macrophages express oestrogen receptors and are therefore competent to respond to the hormone present in their microenvironment, which is implicated in sexual dimorphism observed in several immune and autoimmune phenomena. An earlier study from this laboratory demonstrated 17β‐oestradiol (E2) induced apoptosis in macrophages derived from human peripheral blood monocytes and THP‐1 acute monocytic leukaemia cell line when Bcl‐2 was down‐regulated; however, the involvement of E2 receptor subtypes in the modulation of death pathways in these cells remain unknown. Using macrophages derived from THP‐1 human acute monocytic leukaemia cells as a model, we demonstrate that plasma membrane associated oestrogen receptor (ER) ‐α participate in E2 induced Bcl‐2 increase, through activation of the mitogen activated protein kinase (MAPK) pathway whereas cytosolic ER‐β transmits signals for the pro‐apoptotic event of Bax translocation. The mechanistic basis of Bax translocation comprised of ER‐β mediated increase in intracellular pH, facilitated by activation of the Na+–H+ exchanger. Intracellular alkalinization accompanied by concomitant Bcl‐2 increase and Bax migration does not cause cellular apoptosis; however, siRNA mediated down‐regulation of ER‐α during E2 exposure leads to inhibition of Bcl‐2 increase and consequently apoptosis due to the unopposed action of mitochondrial Bax. In summary, this study underscores the importance of integrative signalling modality from multiple oestrogen receptor pools in modulating oestrogen effects on human monocyte‐derived macrophage apoptotic signalling pathway, which opens new vistas to explore the use of selective oestrogen receptor modulators in apoptosis‐based therapies.
Molecular and Cellular Biology | 2013
Abhishek Aich; Chandrima Shaha
ABSTRACT Lower eukaryotes like the kinetoplastid parasites are good models to study evolution of cellular pathways during steps to eukaryogenesis. In this study, a kinetoplastid parasite, Leishmania donovani, was used to understand the process of mitochondrial translocation of a nucleus-encoded mitochondrial protein, the mitochondrial tryparedoxin peroxidase (mTXNPx). We report the presence of an N-terminal cleavable mitochondrial targeting signal (MTS) validated through deletion and grafting experiments. We also establish a novel finding of calmodulin (CaM) binding to the MTS of mTXNPx through specific residues. Mutation of CaM binding residues, keeping intact the residues involved in mitochondrial targeting and biochemical inhibition of CaM activity both in vitro and in vivo, prevented mitochondrial translocation. Through reconstituted import assays, we demonstrate obstruction of mitochondrial translocation either in the absence of CaM or Ca2+ or in the presence of CaM inhibitors. We also demonstrate the prevention of temperature-driven mTXNPx aggregation in the presence of CaM. These findings establish the idea that CaM is required for the transport of the protein to mitochondria through maintenance of translocation competence posttranslation.
Journal of Cellular and Molecular Medicine | 2014
Rakshamani Tripathi; Dipankar Ash; Chandrima Shaha
Emerging interest on the interrelationship between the apoptotic and autophagy pathways in the context of cancer chemotherapy is providing exciting discoveries. Complexes formed between molecules from both pathways present potential targets for chemotherapeutics design as disruption of such complexes could alter cell survival. This study demonstrates an important role of Beclin‐1 and p53 interaction in cell fate decision of human embryonal carcinoma cells. The findings provide evidence for p53 interaction with Beclin‐1 through the BH3 domain of the latter. This interaction facilitated Beclin‐1 ubiquitination through lysine 48 linkage, resulting in proteasome‐mediated degradation, consequently maintaining a certain constitutive level of Beclin‐1. Disruption of Beclin‐1–p53 interaction through shRNA‐mediated down‐regulation of p53 reduced Beclin‐1 ubiquitination suggesting requirement of p53 for the process. Reduction of ubiquitination consequently resulted in an increase in Beclin‐1 levels with cells showing high autophagic activity. Enforced overexpression of p53 in the p53 down‐regulated cells restored ubiquitination of Beclin‐1 reducing its level and lowering autophagic activity. The Beclin‐1–p53 interaction was also disrupted by exposure to cisplatin‐induced stress resulting in higher level of Beclin‐1 because of lesser ubiquitination. This higher concentration of Beclin‐1 increased autophagy and offered protection to the cells from cisplatin‐induced death. Inhibition of autophagy by either pharmacological or genetic means during cisplatin exposure increased apoptotic death in vitro as well as in xenograft tumours grown in vivo confirming the protective nature of autophagy. Therefore, Beclin‐1–p53 interaction defines one additional molecular subroutine crucial for cell fate decisions in embryonal carcinoma cells.
Collaboration
Dive into the Chandrima Shaha's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputs