Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chanel Barnes is active.

Publication


Featured researches published by Chanel Barnes.


Journal of Biological Chemistry | 2008

Identification of Dopamine D1–D3 Receptor Heteromers: INDICATIONS FOR A ROLE OF SYNERGISTIC D1–D3 RECEPTOR INTERACTIONS IN THE STRIATUM*

Daniel Marcellino; Sergi Ferré; Vicent Casadó; Antonio Cortés; Bernard Le Foll; Carmen Mazzola; Filippo Drago; Oliver Saur; Holger Stark; Aroa Soriano; Chanel Barnes; Steven R. Goldberg; Carme Lluis; Kjell Fuxe; Rafael Franco

The function of dopamine D3 receptors present in the striatum has remained elusive. In the present study evidence is provided for the existence of dopamine D1–D3 receptor heteromers and for an intramembrane D1–D3 receptor cross-talk in living cells and in the striatum. The formation of D1–D3 receptor heteromers was demonstrated by fluorescence resonance energy transfer and bioluminescence resonance energy transfer techniques in transfected mammalian cells. In membrane preparations from these cells, a synergistic D1–D3 intramembrane receptor-receptor interaction was observed, by which D3 receptor stimulation enhances D1 receptor agonist affinity, indicating that the D1–D3 intramembrane receptor-receptor interaction is a biochemical characteristic of the D1–D3 receptor heteromer. The same biochemical characteristic was also observed in membrane preparations from brain striatum, demonstrating the striatal co-localization and heteromerization of D1 and D3 receptors. According to the synergistic D1–D3 intramembrane receptor-receptor interaction, experiments in reserpinized mice showed that D3 receptor stimulation potentiates D1 receptor-mediated behavioral effects by a different mechanism than D2 receptor stimulation. The present study shows that a main functional significance of the D3 receptor is to obtain a stronger dopaminergic response in the striatal neurons that co-express the two receptors.


Neuropharmacology | 2008

Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function

Carla Ferrada; Sergi Ferré; Vicent Casadó; Antonio Cortés; Zuzana Justinova; Chanel Barnes; Enric I. Canela; Steven R. Goldberg; Rob Leurs; Carme Lluis; Rafael Franco

The striatum contains a high density of histamine H(3) receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H(3) and dopamine D(1) receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H(3) and dopamine D(2) receptors. In this study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynaptic interactions between H(3) and D(1) and also between H(3) and dopamine D(2) receptors. The selective H(3) receptor agonist imetit inhibited, while the H(3) receptor antagonist thioperamide potentiated locomotor activation induced by either the D(1) receptor agonist SKF 38393 or the D(2) receptor agonist quinpirole. High scores of locomotor activity were obtained with H(3) receptor blockade plus D(1) and D(2) receptor co-activation, i.e., when thioperamide was co-administered with both SKF 38393 and quinpirole. Radioligand binding experiments in striatal membrane preparations showed the existence of a strong and selective H(3)-D(2) receptor interaction at the membrane level. In agonist/antagonist competition experiments, stimulation of H(3) receptors with several H(3) receptor agonists significantly decreased the affinity of D(2) receptors for the agonist. This kind of intramembrane receptor-receptor interactions are a common biochemical property of receptor heteromers. In fact, by using Bioluminescence Resonance Energy Transfer techniques in co-transfected HEK-293 cells, H(3) (but not H(4)) receptors were found to form heteromers with D(2) receptors. This study demonstrates an important role of postsynaptic H(3) receptors in the modulation of dopaminergic transmission by means of a negative modulation of D(2) receptor function.


Journal of Pharmacology and Experimental Therapeutics | 2008

Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats.

Maria Scherma; Leigh V. Panlilio; Paola Fadda; Liana Fattore; Islamhany Gamaleddin; Bernard Le Foll; Zuzana Justinova; Éva Mikics; József Haller; Julie Medalie; Jessica Stroik; Chanel Barnes; Sevil Yasar; Gianluigi Tanda; Daniele Piomelli; Walter Fratta; Steven R. Goldberg

Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB1 receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Δ9-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together. These previous studies have used systemically administered CB1 receptor agonists and antagonists and gene deletion techniques, which affect cannabinoid CB1 receptors throughout the brain. A more functionally selective way to alter endocannabinoid activity is to inhibit fatty acid amide hydrolase (FAAH), thereby magnifying and prolonging the effects of the endocannabinoid anandamide only when and where it is synthesized and released on demand. Here, we combined behavioral and neurochemical approaches to evaluate whether the FAAH inhibitor URB597 (cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester) could alter the abuse-related effects of nicotine in rats. We found that URB597, at a dose (0.3 mg/kg) that had no behavioral effects by itself, prevented development of nicotine-induced conditioned place preference (CPP) and acquisition of nicotine self-administration. URB597 also reduced nicotine-induced reinstatement in both CPP and self-administration models of relapse. Furthermore, in vivo microdialysis showed that URB597 reduced nicotine-induced dopamine elevations in the nucleus accumbens shell, the terminal area of the brains mesolimbic reward system. These findings suggest that FAAH inhibition can counteract the addictive properties of nicotine and that FAAH may serve as a new target for development of medications for treatment of tobacco dependence.


Biological Psychiatry | 2011

Blockade of Nicotine Reward and Reinstatement by Activation of Alpha-Type Peroxisome Proliferator-Activated Receptors

Paola Mascia; Marco Pistis; Zuzana Justinova; Leigh V. Panlilio; Antonio Luchicchi; Salvatore Lecca; Maria Scherma; Walter Fratta; Paola Fadda; Chanel Barnes; Godfrey H. Redhi; Sevil Yasar; Bernard Le Foll; Gianluigi Tanda; Daniele Piomelli; Steven R. Goldberg

BACKGROUND Recent findings indicate that inhibitors of fatty acid amide hydrolase (FAAH) counteract the rewarding effects of nicotine in rats. Inhibition of FAAH increases levels of several endogenous substances in the brain, including the endocannabinoid anandamide and the noncannabinoid fatty acid ethanolamides oleoylethanolamide (OEA) and palmitoylethanolamide, which are ligands for alpha-type peroxisome proliferator-activated nuclear receptors (PPAR-α). Here, we evaluated whether directly acting PPAR-α agonists can modulate reward-related effects of nicotine. METHODS We combined behavioral, neurochemical, and electrophysiological approaches to evaluate effects of the PPAR-α agonists [[4-Chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid (WY14643) and methyl oleoylethanolamide (methOEA; a long-lasting form of OEA) on 1) nicotine self-administration in rats and squirrel monkeys; 2) reinstatement of nicotine-seeking behavior in rats and monkeys; 3) nicotine discrimination in rats; 4) nicotine-induced electrophysiological activity of ventral tegmental area dopamine neurons in anesthetized rats; and 5) nicotine-induced elevation of dopamine levels in the nucleus accumbens shell of freely moving rats. RESULTS The PPAR-α agonists dose-dependently decreased nicotine self-administration and nicotine-induced reinstatement in rats and monkeys but did not alter food- or cocaine-reinforced operant behavior or the interoceptive effects of nicotine. The PPAR-α agonists also dose-dependently decreased nicotine-induced excitation of dopamine neurons in the ventral tegmental area and nicotine-induced elevations of dopamine levels in the nucleus accumbens shell of rats. The ability of WY14643 and methOEA to counteract the behavioral, electrophysiological, and neurochemical effects of nicotine was reversed by the PPAR-α antagonist 1-[(4-Chlorophenyl)methyl]-3-[(1,1-dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-Indole-2-propanoic acid (MK886). CONCLUSIONS These findings indicate that PPAR-α might provide a valuable new target for antismoking medications.


PLOS ONE | 2010

Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat

Irina N. Krasnova; Zuzana Justinova; Bruce Ladenheim; Subramaniam Jayanthi; Michael T. McCoy; Chanel Barnes; John E. Warner; Steven R. Goldberg; Jean Lud Cadet

Methamphetamine (meth) is an illicit psychostimulant that is abused throughout the world. Repeated passive injections of the drug given in a single day or over a few days cause significant and long-term depletion of dopamine and serotonin in the mammalian brain. Because meth self-administration may better mimic some aspects of human drug-taking behaviors, we examined to what extent this pattern of drug treatment might also result in damage to monoaminergic systems in the brain. Rats were allowed to intravenously self-administer meth (yoked control rats received vehicle) 15 hours per day for 8 days before being euthanized at either 24 hours or at 7 and 14 days after cessation of drug taking. Meth self-administration by the rats was associated with a progressive escalation of daily drug intake to 14 mg/kg per day. Animals that self-administered meth exhibited dose-dependent decreases in striatal dopamine levels during the period of observation. In addition, there were significant reductions in the levels of striatal dopamine transporter and tyrosine hydroxylase proteins. There were also significant decreases in the levels of dopamine, dopamine transporter, and tyrosine hydroxylase in the cortex. In contrast, meth self-administration caused only transient decreases in norepinephrine and serotonin levels in the two brain regions, with these values returning to normal at seven days after cessation of drug taking. Importantly, meth self-administration was associated with significant dose-dependent increases in glial fibrillary acidic protein in both striatum and cortex, with these changes being of greater magnitude in the striatum. These results suggest that meth self-administration by rats is associated with long-term biochemical changes that are reminiscent of those observed in post-mortem brain tissues of chronic meth abusers.


Neurobiology of Disease | 2013

CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat

Irina N. Krasnova; Margarit Chiflikyan; Zuzana Justinova; Michael T. McCoy; Bruce Ladenheim; Subramaniam Jayanthi; Cynthia Quintero; Christie Brannock; Chanel Barnes; Jordan E. Adair; Elin Lehrmann; Firas Kobeissy; Mark S. Gold; Kevin G. Becker; Steven R. Goldberg; Jean Lud Cadet

Neuroplastic changes in the dorsal striatum participate in the transition from casual to habitual drug use and might play a critical role in the development of methamphetamine (METH) addiction. We examined the influence of METH self-administration on gene and protein expression that may form substrates for METH-induced neuronal plasticity in the dorsal striatum. Male Sprague-Dawley rats self-administered METH (0.1mg/kg/injection, i.v.) or received yoked saline infusions during eight 15-h sessions and were euthanized 2h, 24h, or 1month after cessation of METH exposure. Changes in gene and protein expression were assessed using microarray analysis, RT-PCR and Western blots. Chromatin immunoprecipitation (ChIP) followed by PCR was used to examine epigenetic regulation of METH-induced transcription. METH self-administration caused increases in mRNA expression of the transcription factors, c-fos and fosb, the neurotrophic factor, Bdnf, and the synaptic protein, synaptophysin (Syp) in the dorsal striatum. METH also caused changes in ΔFosB, BDNF and TrkB protein levels, with increases after 2 and 24h, but decreases after 1month of drug abstinence. Importantly, ChIP-PCR showed that METH self-administration caused enrichment of phosphorylated CREB (pCREB), but not of histone H3 trimethylated at lysine 4 (H3K4me3), on promoters of c-fos, fosb, Bdnf and Syp at 2h after cessation of drug intake. These findings show that METH-induced changes in gene expression are mediated, in part, by pCREB-dependent epigenetic phenomena. Thus, METH self-administration might trigger epigenetic changes that mediate alterations in expression of genes and proteins serving as substrates for addiction-related synaptic plasticity.


Journal of Pharmacology and Experimental Therapeutics | 2010

Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats.

Teruo Hayashi; Zuzana Justinova; Eri Hayashi; Gianfrancesco Cormaci; Tomohisa Mori; Shang-Yi Tsai; Chanel Barnes; Steven R. Goldberg; Tsung-Ping Su

σ-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of σ-1 receptors in the brain of drug-naive rats and then examined the dynamics of σ-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. σ-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the σ-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the σ-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in σ-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. σ-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and σ-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat.


Neuropsychopharmacology | 2012

Novel Use of a Lipid-Lowering Fibrate Medication to Prevent Nicotine Reward and Relapse: Preclinical Findings

Leigh V. Panlilio; Zuzana Justinova; Paola Mascia; Marco Pistis; Antonio Luchicchi; Salvatore Lecca; Chanel Barnes; Godfrey H. Redhi; Jordan Adair; Stephen J. Heishman; Sevil Yasar; Mano Aliczki; József Haller; Steven R. Goldberg

Experimental drugs that activate α-type peroxisome proliferator-activated receptors (PPARα) have recently been shown to reduce the rewarding effects of nicotine in animals, but these drugs have not been approved for human use. The fibrates are a class of PPARα-activating medications that are widely prescribed to improve lipid profiles and prevent cardiovascular disease, but these drugs have not been tested in animal models of nicotine reward. Here, we examine the effects of clofibrate, a representative of the fibrate class, on reward-related behavioral, electrophysiological, and neurochemical effects of nicotine in rats and squirrel monkeys. Clofibrate prevented the acquisition of nicotine-taking behavior in naive animals, substantially decreased nicotine taking in experienced animals, and counteracted the relapse-inducing effects of re-exposure to nicotine or nicotine-associated cues after a period of abstinence. In the central nervous system, clofibrate blocked nicotines effects on neuronal firing in the ventral tegmental area and on dopamine release in the nucleus accumbens shell. All of these results suggest that fibrate medications might promote smoking cessation. The fact that fibrates are already approved for human use could expedite clinical trials and subsequent implementation of fibrates as a treatment for tobacco dependence, especially in smokers with abnormal lipid profiles.


Nature Neuroscience | 2013

Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

Zuzana Justinova; Paola Mascia; Hui-Qiu Wu; Maria E Secci; Godfrey H. Redhi; Leigh V. Panlilio; Maria Scherma; Chanel Barnes; Alexandra Parashos; Tamara Zara; Walter Fratta; Marcello Solinas; Marco Pistis; Jack Bergman; Brian D. Kangas; Sergi Ferré; Gianluigi Tanda; Robert Schwarcz; Steven R. Goldberg

In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ9-tetrahydrocannabinol (THC), marijuanas main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.


Neuropsychopharmacology | 2013

Prior Exposure to THC Increases the Addictive Effects of Nicotine in Rats

Leigh V. Panlilio; Claudio Zanettini; Chanel Barnes; Marcelo Solinas; Steven R. Goldberg

Although it is more common for drug abuse to progress from tobacco to cannabis, in many cases cannabis use develops before tobacco use. Epidemiological evidence indicates that prior cannabis use increases the likelihood of becoming dependent on tobacco. To determine whether this effect might be due to cannabis exposure per se, in addition to any genetic, social, or environmental factors that might contribute, we extended our series of studies on ‘gateway drug’ effects in animal models of drug abuse. Rats were exposed to THC, the main psychoactive constituent of cannabis, for 3 days (two intraperitoneal injections/day). Then, starting 1 week later, they were allowed to self-administer nicotine intravenously. THC exposure increased the likelihood of acquiring the nicotine self-administration response from 65% in vehicle-exposed rats to 94% in THC-exposed rats. When the price of nicotine was manipulated by increasing the response requirement, THC-exposed rats maintained higher levels of intake than vehicle-exposed rats, indicating that THC exposure increased the value of nicotine reward. These results contrast sharply with our earlier findings that prior THC exposure did not increase the likelihood of rats acquiring either heroin or cocaine self-administration, nor did it increase the reward value of these drugs. The findings obtained here suggest that a history of cannabis exposure might have lasting effects that increase the risk of becoming addicted to nicotine.

Collaboration


Dive into the Chanel Barnes's collaboration.

Top Co-Authors

Avatar

Steven R. Goldberg

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Zuzana Justinova

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Bernard Le Foll

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Leigh V. Panlilio

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Sergi Ferré

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Godfrey H. Redhi

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Paola Mascia

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Sevil Yasar

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge