Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chaney Lin is active.

Publication


Featured researches published by Chaney Lin.


Scientific Reports | 2015

Natural quasicrystal with decagonal symmetry

Luca Bindi; Nan Yao; Chaney Lin; Lincoln S. Hollister; Christopher L. Andronicos; Vadim V. Distler; Michael P. Eddy; Alexander Kostin; Valery Kryachko; Glenn J. MacPherson; William M. Steinhardt; Marina A. Yudovskaya; Paul J. Steinhardt

We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula.


Nature Communications | 2014

Impact-induced shock and the formation of natural quasicrystals in the early solar system

Lincoln S. Hollister; Luca Bindi; Nan Yao; Gerald R. Poirier; Christopher L. Andronicos; Glenn J. MacPherson; Chaney Lin; Vadim V. Distler; Michael P. Eddy; Alexander Kostin; Valery Kryachko; William M. Steinhardt; Marina A. Yudovskaya; John M. Eiler; Yunbin Guan; Jamil J. Clarke; Paul J. Steinhardt

The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases. The meteorite also contains heretofore unobserved phases of iron-nickel and iron sulphide with substantial amounts of Al and Cu. The presence of these phases in Khatyrka provides further proof that the Al-Cu alloys are natural products of unusual processes that occurred in the early solar system.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Shock synthesis of quasicrystals with implications for their origin in asteroid collisions

Paul D. Asimow; Chaney Lin; Luca Bindi; Chi Ma; Oliver Tschauner; Lincoln S. Hollister; Paul J. Steinhardt

Significance The singular occurrence, to date, of natural quasicrystals requires an explanation both of the possibility and of the rarity of their formation outside of the laboratory. Successful synthesis by an experimental shock, with starting materials similar to the exotic intermetallic alloys in the Khatyrka meteorite, demonstrates a mechanism that is feasible in space but not in any natural setting on Earth. The previously unrecognized composition of the synthesized quasicrystal, the first, to our knowledge, to be created by shocking discrete bulk starting materials, demonstrates a method for discovery of previously unknown quasicrystal compositions. We designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg0.75Fe2+0.25)2SiO4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al68–73Fe11–16Cu10–12Cr1–4Ni1–2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystal in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.


American Mineralogist | 2014

Steinhardtite, a new body-centered-cubic allotropic form of aluminum from the Khatyrka CV3 carbonaceous chondrite

Luca Bindi; Nan Yao; Chaney Lin; Lincoln S. Hollister; Glenn J. MacPherson; Gerald R. Poirier; Christopher L. Andronicos; Vadim V. Distler; Michael P. Eddy; Alexander Kostin; Valery Kryachko; William M. Steinhardt; Marina A. Yudovskaya

Abstract Steinhardtite is a new mineral from the Khatyrka meteorite; it is a new allotropic form of aluminum. It occurs as rare crystals up to ~10 μm across in meteoritic fragments that contain evidence of a heterogeneous distribution of pressures and temperatures during impact shock, in which some portions of the meteorite reached at least 5 GPa and 1200 °C. The meteorite fragments contain the high-pressure phases ahrensite, coesite, stishovite, and an unnamed spinelloid with composition Fe3-xSixO4 (x ≈ 0.4). Other minerals include trevorite, Ni-Al-Mg-Fe spinels, magnetite, diopside, forsterite, clinoenstatite, nepheline, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, cupalite, taenite, and Al-bearing taenite. Given the exceedingly small grain size of steinhardtite, it was not possible to determine most of the physical properties for the mineral. A mean of 9 electron microprobe analyses (obtained from two different fragments) gave the formula Al0.38Ni0.32Fe0.30, on the basis of 1 atom. A combined TEM and single-crystal X‑ray diffraction study revealed steinhardtite to be cubic, space group Im3m, with a = 3.0214(8) Å, and V = 27.58(2) Å3, Z = 2. In the crystal structure [R1 = 0.0254], the three elements are disordered at the origin of the unit cell in a body-centered-cubic packing (α-Fe structure type). The five strongest powder-diffraction lines [d in Å (I/I0) (hkl)] are: 2.1355 (100) (110); 1.5100 (15) (200); 1.2329 (25) (211); 0.9550 (10) (310); 0.8071 (30) (321). The new mineral has been approved by the IMA-NMNC Commission (2014-036) and named in honor of Paul J. Steinhardt, Professor at the Department of Physics of Princeton University, for his extraordinary and enthusiastic dedication to the study of the mineralogy of the Khatyrka meteorite, a unique CV3 carbonaceous chondrite containing the first natural quasicrystalline phase icosahedrite. The recovery of the polymorph of Al described here that contains essential amounts of Ni and Fe suggests that Al could be a contributing candidate for the anomalously low density of the Earth’s presumed Fe-Ni core.


American Mineralogist | 2015

Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite

Luca Bindi; Nan Yao; Chaney Lin; Lincoln S. Hollister; Christopher L. Andronicos; Vadim V. Distler; Michael P. Eddy; Alexander Kostin; Valery Kryachko; Glenn J. MacPherson; William M. Steinhardt; Marina A. Yudovskaya; Paul J. Steinhardt

Abstract Decagonite is the second natural quasicrystal, after icosahedrite (Al63Cu24Fe13), and the first to exhibit the crystallographically forbidden decagonal symmetry. It was found as rare fragments up to ~60 mm across in one of the grains (labeled number 126) of the Khatyrka meteorite, a CV3 carbonaceous chondrite. The meteoritic grain contains evidence of a heterogeneous distribution of pressures and temperatures that occurred during impact shock, in which some portions of the meteorite reached at least 5 GPa and 1200 °C. Decagonite is associated with Al-bearing trevorite, diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, pentlandite, Cu-bearing troilite, icosahedrite, khatyrkite, taenite, Al-bearing taenite, and steinhardtite. Given the exceedingly small size of decagonite, it was not possible to determine most of the physical properties for the mineral. A mean of seven electron microprobe analyses (obtained from three different fragments) gave the formula Al70.2(3)Ni24.5(4)Fe5.3(2), on the basis of 100 atoms. A combined TEM and single-crystal X‑ray diffraction study revealed the unmistakable signature of a decagonal quasicrystal: a pattern of sharp peaks arranged in straight lines with 10-fold symmetry together with periodic patterns taken perpendicular to the 10-fold direction. For quasicrystals, by definition, the structure is not reducible to a single three-dimensional unit cell, so neither cell parameters nor Z can be given. The likely space group is P105/mmc, as is the case for synthetic Al71Ni24Fe5. The five strongest powder-diffraction lines [d in Å (I/I0)] are: 2.024 (100), 3.765 (50), 2.051 (45), 3.405 (40), 1.9799 (40). The new mineral has been approved by the IMA-NMNC Commission (IMA2015-017) and named decagonite for the 10-fold symmetry of its structure. The finding of a second natural quasicrystal informs the longstanding debate about the stability and robustness of quasicrystals among condensed matter physicists and demonstrates that mineralogy can continue to surprise us and have a strong impact on other disciplines.


Scientific Reports | 2016

Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory

Luca Bindi; Chaney Lin; Chi Ma; Paul J. Steinhardt

We report the first occurrence of an icosahedral quasicrystal with composition Al62.0(8)Cu31.2(8)Fe6.8(4), outside the measured equilibrium stability field at standard pressure of the previously reported Al-Cu-Fe quasicrystal (AlxCuyFez, with x between 61 and 64, y between 24 and 26, z between 12 and 13%). The new icosahedral mineral formed naturally and was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite that experienced shock metamorphism, local melting (with conditions exceeding 5 GPa and 1,200 °C in some locations), and rapid cooling, all of which likely resulted from impact-induced shock in space. This is the first example of a quasicrystal composition discovered in nature prior to being synthesized in the laboratory. The new composition was found in a grain that has a separate metal assemblage containing icosahedrite (Al63Cu24Fe13), currently the only other known naturally occurring mineral with icosahedral symmetry (though the latter composition had already been observed in the laboratory prior to its discovery in nature). The chemistry of both the icosahedral phases was characterized by electron microprobe, and the rotational symmetry was confirmed by means of electron backscatter diffraction.


Scientific Reports | 2017

Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space

Chaney Lin; Lincoln S. Hollister; Glenn J. MacPherson; Luca Bindi; Chi Ma; Christopher L. Andronicos; Paul J. Steinhardt

We report on a fragment of the quasicrystal-bearing CV3 carbonaceous chondrite Khatyrka recovered from fine-grained, clay-rich sediments in the Koryak Mountains, Chukotka (Russia). We show higher melting-point silicate glass cross-cutting lower melting-point Al-Cu-Fe alloys, as well as unambiguous evidence of a reduction-oxidation reaction history between Al-Cu-Fe alloys and silicate melt. The redox reactions involve reduction of FeO and SiO2 to Fe and Fe-Si metal, and oxidation of metallic Al to Al2O3, occurring where silicate melt was in contact with Al-Cu-Fe alloys. In the reaction zone, there are metallic Fe and Fe-Si beads, aluminous spinel rinds on the Al-Cu-Fe alloys, and Al2O3 enrichment in the silicate melt surrounding the alloys. From this and other evidence, we demonstrate that Khatyrka must have experienced at least two distinct events: first, an event as early as 4.564 Ga in which the first Al-Cu-Fe alloys formed; and, second, a more recent impact-induced shock in space that led to transformations of and reactions between the alloys and the meteorite matrix. The new evidence firmly establishes that the Al-Cu-Fe alloys (including quasicrystals) formed in outer space in a complex, multi-stage process.


American Mineralogist | 2017

Hollisterite (Al3Fe), kryachkoite (Al,Cu)6(Fe,Cu), and stolperite (AlCu): Three new minerals from the Khatyrka CV3 carbonaceous chondrite

Chi Ma; Chaney Lin; Luca Bindi; Paul J. Steinhardt

Abstract Our nanomineralogy investigation of the Khatyrka CV3 carbonaceous chondrite has revealed three new alloy minerals—hollisterite (IMA 2016-034; Al3Fe), kryachkoite [IMA 2016-062; (Al,Cu)6(Fe,Cu)], and stolperite (IMA 2016-033; AlCu)—in section 126A of USNM 7908. Hollisterite occurs only as one crystal with stolperite, icosahedrite, and khatyrkite, showing an empirical formula of Al2.89Fe0.77Cu0.32Si0.02 and a monoclinic C2/m structure with a = 15.60 Å, b = 7.94 Å, c = 12.51 Å, β = 108.1°, V = 1472.9 Å3, Z = 24. Kryachkoite occurs with khatyrkite and aluminum, having an empirical formula of Al5.45Cu0.97Fe0.55Cr0.02Si0.01 and an orthorhombic Cmc21 structure with a = 7.460 Å, b = 6.434 Å, c = 8.777 Å, V = 421.3 Å3, Z = 4. Stolperite occurs within khatyrkite, or along with icosahedrite and/or hollisterite and khatyrkite, having an empirical formula of Al1.15Cu0.81Fe0.04 and a cubic Pm3¯m


Journal of Physics: Condensed Matter | 2017

Hyperuniformity variation with quasicrystal local isomorphism class

Chaney Lin; Paul J. Steinhardt; S. Torquato

\begin{array}{} Pm \overline 3m \end{array}


Journal of Physics: Condensed Matter | 2017

Corrigendum: Hyperuniformity variation with quasicrystal local isomorphism class (2017 J. Phys. Condens. Matter 29 204003)

Chaney Lin; Paul J. Steinhardt; S. Torquato

structure with a = 2.9 Å, V = 24.4 Å3, Z = 1. Specific features of the three new minerals, and their relationships with the meteorite matrix material, add significant new evidence for the extraterrestrial origin of the Al-Cu-Fe metal phases in the Khatyrka meteorite. Hollisterite is named in honor of Lincoln S. Hollister at Princeton University for his extraordinary contributions to earth science. Kryachkoite is named in honor of Valery Kryachko who discovered the original samples of the Khatyrka meteorite in 1979. Stolperite is named in honor of Edward M. Stolper at California Institute of Technology for his fundamental contributions to petrology and meteorite research.

Collaboration


Dive into the Chaney Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Bindi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn J. MacPherson

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Chi Ma

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Vadim V. Distler

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marina A. Yudovskaya

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Michael P. Eddy

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nan Yao

Princeton University

View shared research outputs
Researchain Logo
Decentralizing Knowledge